Presseinformationen

Abbrechen
  • Multikristalline Weltrekordsolarzelle aus n-Typ HPM Siliciummaterial
    © Foto Fraunhofer ISE

    Die multikristalline Weltrekordsolarzelle aus n-Typ HPM Siliciummaterial hat eine Fläche von 2 cm x 2 cm. Die Zelle ist sehr gut entspiegelt, daher sind kaum noch Korngrenzen des Siliciummaterials zu erkennen und sie erscheint nahezu schwarz.

    Das Potenzial der Photovoltaik (PV) ist noch nicht ausgeschöpft, Industrie und Forschung arbeiten intensiv an der weiteren Effizienzsteigerung und Kosten-reduktion für Solarzellen, dem Herzstück von PV-Kraftwerken. Für multikristallines Silicium, das Arbeitspferd der Solarzellenindustrie, haben die Forscher am Fraunhofer ISE jetzt einen Wirkungsgrad von 21,9 Prozent erreicht und damit den Weltrekord wieder nach Freiburg geholt.

    mehr Info
  • Multikristalliner Silicium-Wafer
    © Foto Fraunhofer ISE

    Kristalle finden vielfache Anwendung, das Foto zeigt einen multikristallinen Silicium-Wafer, die Basis für eine Solarzelle.

    Das Fraunhofer-Institut für Solare Energiesysteme ISE, die Kristallographie am Institut für Geo- und Umweltnaturwissenschaften der Universität Freiburg und die Universität Genf veranstalten unter dem Dach der Deutschen Gesellschaft für Kristallwachstum und Kristallzüchtung DGKK und der Schweizerischen Gesellschaft für Kristallographie SGK-SSCR vom 8. bis 10. März 2017 in den Räumen der Chemischen Institute der Universität Freiburg eine internationale Konferenz zur Kristallzüchtung. Am 7. März findet am Fraunhofer ISE ein Seminar der Jungen DGKK für Nachwuchswissenschaftler statt.

    mehr Info
  • Presseinformation #4 / 2017

    Zuverlässigkeit von TPedge-Modulen erfolgreich getestet

    7.2.2017

    TPedge-Modul mit 2 mm-Dünnglas während der Flächenlastprüfung
    © Foto Fraunhofer ISE

    TPedge-Modul mit 2 mm-Dünnglas während der Flächenlastprüfung.

    Das TPedge-Konzept reduziert die Material- und Produktionskosten von Modulen, indem es auf Einkapselungsfolien und den Laminationsprozess verzichtet. Gleichzeitig erhöht es die Alterungsstabilität der PV-Module erheblich. Im Projekt »TPedge« haben Forscher des Fraunhofer ISE gemeinsam mit Partnern Prozesse entwickelt, um die neuartigen PV-Module industriell herzustellen. Zahlreiche Prototypen wurden jetzt umfangreich geprüft und die hohe Zuverlässigkeit des Modulkonzepts bestätigt.

    mehr Info
  • © Foto G.tecz Engineering GmbH

    TABSOLAR-Element aus Ultrahochleistungsbeton (UHPC), das im Membran-Vakuumtiefziehverfahren hergestellt wurde.

    Bei der Integration erneuerbarer Energien in die Gebäudehülle kann Solarthermie eine wesentliche Rolle spielen. Bislang basieren solarthermische Produkte in der Regel auf durchströmten Bauteilen aus Metall, die einen hohen Anteil der Solarstrahlung aufnehmen und zur Vermeidung thermischer Verluste wenig Infrarotstrahlung abgeben. Mit diesem Stand der Technik wird der Gebäudeintegration und architektonischen Aspekten jedoch oft wenig Rechnung getragen. Im Projekt »TABSOLAR II« verfolgt das Fraunhofer ISE gemeinsam mit Industriepartnern den neuartigen Ansatz, solarthermische Kollektoren aus Ultrahochleistungsbeton herzustellen. Geeignete Verfahren wurden bereits erprobt. Das Projektteam erarbeitet nun die nächsten Schritte hin zur späteren Produktfertigung und Anschlusskonzepte für die Gebäudeintegration. Der aktuelle Stand der Entwicklungen wird auf der BAU 2017 vorgestellt.

    mehr Info
  • © Foto Fraunhofer ISE

    Die Web-basierte Datenvisualisierung der Energiemonitoring-Plattform MONDAS bietet eine Vielzahl von Darstellungsmöglichkeiten, die in einfacher Weise vom Nutzer konfiguriert und strukturiert werden können.

    Durch eine optimierte Betriebsführung können bis zu 30 % des Gebäudeenergieverbrauchs eingespart werden. Schon geringinvestive Maßnahmen können zu Optimierungen und erheblichen Kostensenkungen führen. Um Energie einzusparen ist eine detaillierte Analyse des Gebäudebetriebs erforderlich. Zu diesem Zweck hat das Fraunhofer ISE die Energiemonitoring-Plattform MONDAS entwickelt, die alle nötigen Bausteine für die Erfassung, Speicherung, Verarbeitung und Visualisierung von relevanten Zeitreihendaten im Gebäudebetrieb bereitstellt. Die Plattform bündelt erfolgreich eingesetzte Softwaremodule zu einem leistungsstarken Gesamtsystem. Sie wird auf der BAU 2017 präsentiert.

    mehr Info
  • Presseinformation #1 / 2017

    Mit solaren Gebäudehüllen Architektur gestalten

    16.1.2017

    © Foto Facade-Lab

    Visualisierung einer Fassade mit Streifenkollektoren.

    Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

    mehr Info
  • SmartCalc.CTM
    © Foto Fraunhofer ISE

    Mit SmartCalc.CTM hat das Fraunhofer ISE eine Software entwickelt, mit der Leistungsverluste bei der Herstellung von Solarmodulen reduziert werden können.

    Forschung und Industrie investieren viel Know-how in die Leistungssteigerung von Solarzellen. Um von dem Effizienzvorsprung auf Zellebene auch auf Modulebene zu profitieren, muss die Integration von Solarzellen zuverlässig und gleichzeitig verlustarm umgesetzt werden. Vor diesem Hintergrund hat die Gruppe »Photovoltaische Module« am Fraunhofer ISE die Software SmartCalc.CTM entwickelt. PV-Modulhersteller und Materialhersteller können damit den Aufbau und die Materialkombination eines PV-Moduls optimieren, ohne dass eine Prototypenherstellung erforderlich ist.

    mehr Info
  • © Foto Fraunhofer ISE

    Neue Materialien ermöglichen hohe Taktfrequenzen: Fraunhofer ISE entwickelt resonanten DC/DC-Wandler (Demonstrator) mit 2,5 MHz für die Luftfahrtanwendung.

    Die Effizienz leistungselektronischer Systeme ist nicht allein vom elektrischen Wirkungsgrad, sondern im Fall mobiler Systeme auch vom Gewicht abhängig. Durch die Gewichtsreduktion entsprechender Bauteile und Geräte, z.B. in Flugzeugen, kann Treibstoff eingespart und der Ausstoß von Abgasen reduziert werden. Zur Gewichtsreduktion und Effizienzsteigerung tragen neue Materialien und Komponenten auf Basis von Galliumnitrid (GaN) bei. Durch ihren Einsatz können leistungselektronische Schaltungen mit höheren Schaltfrequenzen betrieben und so deren Leistungsdichte erhöht sowie Materialkosten gesenkt werden. Forscher des Fraunhofer-Instituts für Solare Energiesysteme ISE haben sich gemeinsam mit Partnern mit der Frage beschäftigt, wie zukünftig diese Materialien und Komponenten leistungselektronische Systeme für die Luftfahrt noch effizienter machen können.

    mehr Info
  • © Foto Fraunhofer ISE

    Prof. Dr. Eicke R. Weber, Institutsleiter Fraunhofer ISE.

    Mit einem wissenschaftlichen Symposium zur globalen Energiewende hat das Fraunhofer-Institut für Solare Energiesysteme ISE am 11. November 2016 im Konzerthaus Freiburg die Verdienste von Prof. Eicke R. Weber gewürdigt, der die Leitung des Instituts zum Jahresende aus Altersgründen abgeben wird. Weber gab der deutschen Solarforschung eine weltweit beachtete Stimme und setzte sich mit großem Engagement wissenschaftlich wie politisch für die Energiewende ein. Auch die Struktur und Geschäftsfelder des Instituts richtete er darauf aus und konnte die Belegschaft seit 2006 auf heute 1100 Mitarbeitende mehr als verdoppeln, der weitgehend selbst verdiente Betriebshaushalt wuchs in dieser Zeit von ca. 25 Mio. auf 73 Mio. Euro (2015).

    mehr Info
  • © Foto Fraunhofer ISE/A. Wekkeli

    Gebondete III-V/Si Mehrfachsolarzelle mit 30,2 Prozent Wirkungsgrad.

    Forschern am Fraunhofer-Institut für Solare Energiesysteme ISE ist es gemeinsam mit der österreichischen Firma EV Group gelungen, eine Mehrfachsolarzelle auf Silicium-Basis mit nur zwei Kontakten herzustellen, welche die theoretische Wirkungsgradgrenze reiner Siliciumsolarzellen überschreitet. Hierfür übertrugen die Forscher nur wenige Mikrometer dünne III-V Halbleiterschichten auf Silicium. Die Verbindung gelang ihnen mittels eines aus der Mikroelektronik bekannten Verfahrens, dem direkten Waferbonden. Dabei werden Oberflächen nach einer Plasmaaktivierung im Vakuum unter Druck miteinander verbunden. Es entsteht eine Einheit, indem die Atome der III-V Oberfläche Bindungen mit dem Silicium eingehen. Für eine derartige vollständig integrierte Mehrfachsolarzelle auf Silicium-Basis stellt der erzielte Wirkungsgrad ein erstmaliges Ergebnis dar. Der Solarzelle sieht man die komplexe innere Struktur nicht an, sie besitzt wie herkömmliche Siliciumsolarzellen einen einfachen Vorderund Rückseitenkontakt und kann wie diese in PV-Module integriert werden.

    mehr Info