Building-integrated photovoltaics (BIPV) comprises construction elements that, in addition to generating electricity, provide classic building functions such as thermal insulation, protection against wind and weather, or even architectural functions. Particularly in the facade, BIPV components have features that go well beyond electricity generation. For example, solar modules that are fully integrated into the facade can be used in transparent and non-transparent areas, but also as the cladding of rear-ventilated rainscreens. Individually colored and surface-textured BIPV modules can be used very well as architectural design elements for buildings or entire city districts.
When evaluated over their complete life cycle, many active BIPV modules perform better economically and ecologically than conventional building elements. They help to meet energy-related building regulations and make an important contribution to the energy transition. The technical potential of PV on buildings in Germany is around 1000 GWp. An important R&D goal of Fraunhofer ISE is to further optimize the cost-effectiveness of the modules - while meeting visual and architectural design criteria - in order to significantly improve the CO2 balance of buildings and thus reduce the energy balance to zero ("net zero energy building") or even make it positive ("plus energy building").
Solar-active building elements are becoming increasingly interesting for innovative architects, engineers, producers, investors and urban planners. Fraunhofer ISE offers industrial partners a broad range of research and services for the characterization, development and practical application of building-integrated photovoltaics.