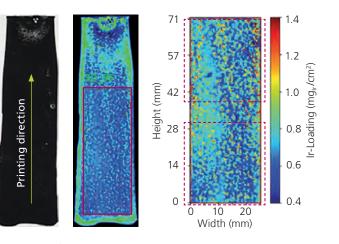


Fraunhofer Institute for Solar Energy Systems ISE


Hydrogen Technology Materials and Components

# **Ex-situ Analytics**

www.ise.fraunhofer.de/hydrogen-technologies

## **Ex-situ Analytics**

Ex-situ analytics provides insights into the microstructure of hydrogen technology materials and components. Properties like pore and particle size, element distribution and concentration in liquids, etc. are measured using high-end analytical equipment without actually operating the components, thus saving time and money.



µXRF Scan of an electrolyzer catalyst layer showing an inhomogeneous iridium loading across the area.

#### Hydrogen Technology Materials and Components

Our core competence is our understanding of the reactive components in hydrogen ( $H_2$ ) technologies – whether it is the reactor for synthetic  $H_2$  derivatives or the membrane electrode assembly for electrolysis or fuel cells. We emphasize four perspectives of our research and development.

- 1 A strong in-situ characterization with state-of-the-art measurement techniques enables the evaluation of component behavior in operation.
- **2** Our industry-like production processes allow us to design specific component architectures and use selected material compositions.
- **3** Our modeling provides a physical understanding of components and allows us to evaluate variations in materials and operation mode.
- 4 The fourth perspective is a strong expertise in ex-situ analytics using modern state-of-the-art equipment. This enables us to obtain meso-, micro- or nanoscopic results from different components and materials used in H<sub>2</sub> technology. For example, we use scanning electron microscopy (SEM) to visualize nano particles used as catalysts in fuel

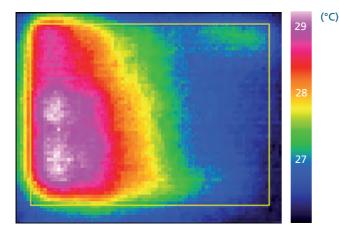
cells and electrolyzers. Mass spectrometry (ICP-MS) is used to analyze trace element or ion concentrations down to parts per trillion (ppt) in liquids like fuel cell product water or cooling liquids. Energy dispersive X-ray (EDX), when combined with SEM, enables the visualization of element distribution at micro and nano scales. Micro X-ray fluorescence ( $\mu$ XRF) can provide large and quantitative macroscopic maps (27 x 24 cm<sup>2</sup>) of element distributions of catalystcoated membranes (CCMs) or other layer-like structures.

Porous Catalyst Layer

SEM image of a fuel cell catalyst layer.

**Ionomer Network** 

Carbon Support


Pore Network

Our key expertise is the ability to combine the results of our ex-situ analytics with a deep knowledge of in-situ behavior, production requirements and theoretical understanding of the corresponding components or devices.

We are continuously looking for partners in our mission to contribute to a better understanding of  $H_2$  technology components. Our analysis will help producers of  $H_2$  technology components to improve performance and quality. We enable system manufacturers to identify failures or contaminations caused by  $H_2$  technology components.

### Our Offer

- micro X-ray fluorescence scanning (µXRF)
- scanning electron microscopy with focused ion beam (FIB-SEM, STEM) and energy dispersive X-ray spectrometry (EDX)
- X-ray photoelectron spectrometry (HT-NAP-XPS)
- mass spectrometry for liquids (ICP-MS) / gases (MS)
- ion (IC) and gas chromatography
- two-phase flow and bubble formation analysis
- H<sub>2</sub> thermography
- interfacial contact resistance (ICR)
- nitrogen physisorption / chemisorption with H<sub>2</sub> or CO
- rheological characterization
- contact angle measurement
- temperature-programmed reduction, oxidation, desorption (TPR, TPO, TPD)
- Karl-Fischer titration
- FTIR (transmission, ATR, DRIFTS)
- magnetic suspension balance



*H*<sub>2</sub>-thermography image of a fuel cell MEA with a damaged membrane.

For producers of H<sub>2</sub> technology components and for system manufacturers integrating H<sub>2</sub> technology components, we use a broad range of ex-situ analytical equipment, which measures component properties in relation to their performance and degradation behaviour. Examples include:

- platinum or iridium loading maps of catalyst layers using µXRF
- membrane and catalyst layer thickness using SEM
- size distribution of platinum nanoparticles using highly resolved STEM
- tomographic visualization of element distribution in porous layers using FIB-SEM and EDX
- trace element analysis in product water, cooling liquids or exhaust gases using ICP-MS, IC or gas mass spectrometry
- degradation and corrosion analysis of bipolar plates using ICR or corrosion current measurements
- insights into reaction mechanisms and surface degradation using HT-NAP-XPS
- membrane stability towards radicals using fenton testing
- material testing for Direct Air Capture applications using DynaSorb-BT
- analysis of gases, solids and liquids using FITR with different sample presentation devices (e.g. ATR)
- study of reaction mechanisms using DRIFTS

### Further Information





Hydrogen Technologies – Ex-situ Analytics for Fuel Cells Dr. Hannes Höffler Phone +49 761 4588-5432

Hydrogen Technologies – Ex-situ Analytics for Sustainable Synthesis Products Markus Knäbbeler-Buß Phone +49 761 4588-2319

Hydrogen Technologies – Ex-situ Analytics for Electrolysis and Hydrogen Infrastructure Stefan Bercher Phone +49 761 4588-2545

h2analytics@ise.fraunhofer.de

Fraunhofer ISE Heidenhofstr. 2 79110 Freiburg, Germany www.ise.fraunhofer.de

© Fraunhofer ISE 02-281120-24