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Foreword 

The International Energy Agency (IEA), founded in November 1974, is an autonomous body within 
the framework of the Organization for Economic Co-operation and Development (OECD) which 
carries out a comprehensive programme of energy co-operation among its member countries. 
The European Union also participates in the work of the IEA. Collaboration in research, develop-
ment and demonstration of new technologies has been an important paǊǘ ƻŦ ǘƘŜ !ƎŜƴŎȅΩǎ tǊo-
gramme.  

The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative R&D Agree-
ments established within the IEA. Since 1993, the PVPS participants have been conducting a varie-
ty of joint projects in the application of photovoltaic conversion of solar energy into electricity. 

The mission of the IEA PVPS Technology Collaboration Programme is: To enhance the internation-
al collaborative efforts which facilitate the role of photovoltaic solar energy as a cornerstone in 
the transition to sustainable energy systems. The underlying assumption is that the market for PV 
systems is rapidly expanding to significant penetrations in grid-connected markets in an increasing 
number of countries, connected to both the distribution network and the central transmission 
network. 

This strong market expansion requires the availability of and access to reliable information on the 
performance and sustainability of PV systems, technical and design guidelines, planning methods, 
financing, etc., to be shared with the various actors. In particular, the high penetration of PV into 
main grids requires the development of new grid and PV inverter management strategies, greater 
focus on solar forecasting and storage, as well as investigations of the economic and technological 
impact on the whole energy system. New PV business models need to be developed, as the de-
centralised character of photovoltaics shifts the responsibility for energy generation more into the 
hands of private owners, municipalities, cities and regions. 

IEA PVPS Task 13 engages in focusing the international collaboration in improving the reliability of 
photovoltaic systems and subsystems by collecting, analyzing and disseminating information on 
their technical performance and failures, providing a basis for their technical assessment, and 
developing practical recommendations for improving their electrical and economic output. 

The current members of the IEA PVPS Task 13 include: 

Australia, Austria, Belgium, China, Denmark, Finland, France, Germany, Israel, Italy, Japan, Malay-
sia, Netherlands, Norway, SolarPower Europe, Spain, Sweden, Switzerland, Thailand and the Unit-
ed States of America.  

This report focusses on new methods for closely monitoring PV systems by using the existing data 
produced by the system for statistical analysis. This will enable system owners and maintenance 
personnel to quickly ascertain a fault condition, even before the fault occurs with some methods, 
thereby increasing PV system availability.  

The editors of the document are Mike Green of M.G.Lightning Ltd, Israel, and Boris Farnung, 
Fraunhofer ISE, Freiburg, Germany. 

The report expresses, as nearly as possible, the international consensus of opinion of the Task 13 
experts on the subject dealt with. Further information on the activities and results of the Task can 
be found at: http://www.iea-pvps.org. 
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Executive Summary 

Availability, high efficiency and therefore fault detection are of equal importance to the PV sys-
tem owner and the grid manager for utility-grade PV and increasingly for the small residential 
array. With increasing penetration of small arrays, large neighborhoods aggregate to virtual meg-
awatt power stations, creating an amorphous and unpredictable power-producing entity. 

Achieving and maintaining high efficiency is the responsibility of the system owner. Large PV 
plants are business units in and of themselves and are managed accordingly. Commercial, small 
industrial and residential systems are usually erected on independent rooftops with no immediate 
professional oversight as to daily maintenance. Few small systems are effectively monitored. At 
best, the system owner monitors the inverter and is made aware of faults to the level of aware-
ness that such monitoring is capable of achieving.  

The simplicity of the PV system in comparison to other energy-producing systems makes for diffi-
cult fault monitoring. Electricity generation in a turbine of any type, for example, entails many 
moving parts, different pressure levels, changing angles and speeds. Set-points defined for sen-
sors on these critical elements in the system can warn of impending system failure. The PV system 
has only meteorological input and electrical output. No parameters are available for monitoring 
with a set-point other than the energy readings and the accompanying electrical parameters sup-
plied by the electricity generation. Smart meters and new inverter technologies allow monitoring 
and communications, opening the scope for improved monitoring and analytics at the small sys-
tem level. Inverter manufacturers and independent monitoring services supply simple metrics to 
aid in ascertaining system health such as inverter comparison (when more than one inverter ex-
ists) and PR calculation (when irradiance values are available). This report examines four new 
methods using increasingly advanced statistical analysis of the system-supplied parameters to 
enable quicker and more exact alerts, particularly for the residential system maintained by non-
professionals. By being technology independent, the methods have applications for grid-level 
integration of distributed energy. 

The first system for residential solar analytics was developed in Australia, where solar irradiation 
data is made available free of charge by the government. This system comprises a simple energy 
meter installed on the PV system feed into the electrical power-distribution box that collects data. 
Using statistical analysis, the data on generated electricity is compared to an expected generation 
profile from the irradiation data and system configuration. The system owner has access to real-
time electricity generation data and fault diagnosis that identifies issues and what to check if per-
formance was not as expected.  

¢ƘŜ ǎŜŎƻƴŘ ǎȅǎǘŜƳ ǳǎŜǎ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ǘƻ ǇǊŜŘƛŎǘ ƴŜȄǘ ŘŀȅΩǎ ƘƻǳǊƭȅ ǇǊƻŘǳŎǘƛƻƴ by small resi-
dential systems for aggregation into virtual neighborhood power plants for the benefit of grid 
managers. This system requires only inverter data feed to the system server. The algorithms work 
on the inverter feed and meteorological prediction extracted from commercially available mete-
orological servers. No irradiation data or system configuration data is required. Applying these 
algoǊƛǘƘƳǎ ƻƴ ȅŜǎǘŜǊŘŀȅΩǎ weather history, as opposed to weather predictions, produces an im-
mediate indication of system health. Tracking daily system health, which is simplified to qualita-
tive ratings from A to F, enables even the smallest system to positively ascertain that the system is 
performing as expected or that a service call should be made. 

Fault prediction is the topic of the third system described in this report, which is also based on 
machine-learning algorithms. Clustering statistical methods are used to predict future faults that 
will affect power production. This system requires only an inverter data feed and access to histor-
ical meteorological data extracted from commercially available meteorological servers. No irradia-
tion data or system configuration data is required. This system has proven so far to predict future 
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loss due to faults, though work continues to classify the specific fault that will occur in order to 
enable the owner to undertake appropriate preemptive corrective action. 

The last system to be described in this report demonstrates promising application of artificial neu-
ral networks. These algorithms learn the behavior of the system from the available inputs. This 
learned behavior is compared to incoming real-time parameters from the system, enabling detec-
tion of faults much faster than existing methods in the field today such as Performance Ratio, 
Power Performance Index or inverter comparison, for example. At the time of writing, the devel-
oped algorithms have produced good results in the test systems. Future work requires that the 
algorithms be applied to data from various seasons and locations and combined with more testing 
and development to detect a wider variety of fault conditions.  
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1 Introduction 

PV systems have come of age to the extent that PV energy penetration into national electrical grid 
systems has reached double digit percentages of total electricity generation in some countries. 
Grid-connected PV electricity generation began on the residential roof top, augmenting electricity 
generation while following a healthy grid, and shutting down when the distribution grid left ac-
ceptable parameters for voltage or frequency. From residential systems of a few kilowatts in size, 
PV arrays grew to commercial systems of tens and hundreds of kilowatts, then progressed to utili-
ty-grade PV power stations of tens of megawatts. Small residential systems in some neighbor-
hoods aggregate to virtual power plants of some megawatts in size, while utility-grade PV power 
plants in some countries are no longer allowed to shut down when the grid is stressed, but must 
support the grid, producing reactive energy to aid in grid stabilization.   

Utility-grade PV power plants are growing in size, yet residential PV systems outstrip them in most 
countries, certainly in number and even in total installed capacity. The utility-grade PV plant is 
increasingly being treated as a conventional power plant and the developers/owners of these 
industrially sized and maintained plants can negotiate with the utilities on mutually accepted 
terms that meet the business plan of both parties. Residential PV, however, leaves the utility with 
many challenges. Before the advent of the current popularity of PV in the residential market, resi-
dents would purchase a certain amount of electrical energy from a given utility. At some point the 
residents began installing PV systems on their roof tops. The utility now sells less energy to these 
household, decreasing profits. However, these PV systems produce electricity by the whims of the 
weather, creating uncertainty in the amount of reserve energy the utility grid manager must have 
on hand at any given time, requiring higher levels of spinning reserve. The utility faces new chal-
lenges in meeting uncertain demand with uncertain supply and tighter constraints on voltage and 
frequency control.  

The loss of revenue due to distributed generation, which requires regulators to rethink tariff sys-
tems to reflect the evolving modern distribution grid that includes distributed generation, cannot 
be dealt with in the scope of this report. However, challenges with integrating distributed energy 
generation can be reduced using the methods reported here, by enabling the utility grid manager 
to better forecast electricity generation from residential neighborhoods, and by greatly increasing 
the availability and lowering Forced Outage Rate (FOR) of the neighborhood as a virtual multi-
megawatt power plant. 

From the point of view of the system owner, low availability and low efficiency translate directly 
to loss of revenue even more so than for the grid manager, particularly for larger systems under 
scrutiny from financial agencies demanding performance reviews that match expectations. Early 
fault detection enables the system owner to act quickly to repair the fault, thereby retaining effi-
ciency, and could prevent excessive abnormal behavior that can lead to major damage including 
fire and electric shock.  

Early monitoring of PV systems encompassed the simple collection of parameters such as power, 
voltage, current, etc., from the inverter. Different inverter manufacturers offered different data 
sets. As systems grew to commercial sizes with business plans under commercial scrutiny, solar 
irradiation sensors became more common, enabling the calculation of a performance ratio to 
enable system owners to understand the overall efficiency of their systems. Professional suppliers 
of monitoring services can now plot the power produced against the solar irradiation in real time. 

In systems consisting of more than one inverter, it has become common for monitoring services 
to supply a daily comparison of the inverters in the system. Since in many systems the inverters 
are not all of the same size, and even when of the same size they are not always loaded with the 
same number of modules on the DC side, the monitoring service must first normalize the parame-
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ters to be used. This normalization is the ratio of the parameter in use to the area of PV modules 
measured in square meters, producing a value for a single square meter, or to the installed power 
of the modules. The normalized parameter is then easily compared to that from other inverters. 

Monitoring for large systems [1] with larger budgets that are funded by financial institutions is 
backed by the financial capacity and the motivation to install more complex monitoring hardware 
elements such as string monitoring, coupled with custom monitoring software. This combination 
enables alarms on low-producing strings or the use of weather-corrected performance ratio met-
rics [2] that offer a more accurate performance ratio based on module temperature as well as 
solar irradiation. As a result, all large PV installations are typically well monitored for efficiency 
and availability, enabling early detection of fault conditions or low efficiency.  

Until recently however, for small residential systems there has not been a cost-effective solution 
for monitoring and fault detection. As a result, the reality for small-system efficiency is that faults 
are often not discovered for some weeks or months, usually after the delivery and analysis of the 
monthly or quarterly electric bill.  

Unlike utility-scale or large commercial systems, the cost of monitoring for single-inverter systems 
has been prohibitive. With independent single inverters, as for a large percentage of residential 
systems, it has not been possible to do an inverter comparison, performance ratio calculation or 
any other metric showing that the system could be producing more than it did. This reality has led 
many small-system owners to have no monitoring at all, since simple, cost-effective methods for 
ascertaining system health were not available.  

With smart metering, new inverter technologies and cloud-based data sharing, new opportunities 
for smart monitoring of residential solar installations are emerging. This report will describe four 
methods for statistical analysis of the parameters supplied by a PV system that will enable system 
owners to understand their system performance better and to identify whether and when their 
system is losing revenue. At the same time, monitoring can indicate a risk of impending faults, 
thereby increasing availability, and inform the grid manager of intermittent supply, reducing the 
Forced Outage Rate and increasing predictability.   

This report attempts to show a departure from classic system monitoring based on comparing 
system parameters to sensor outputs or the dependence on relatively costly service-based meth-
ods for detecting dropping efficiency, towards dependence on readily available system parame-
ters and their statistical relativity. Four methodologies are described, arguably from the least to 
greatest mathematical complexity. The order does represent the development chronology, with 
the first system being developed earlier than the rest and consequently being longer in the field; 
the last system described is still in the academic stages.  

The first methodology is described by Jonathan Dore, of the Australian company Solar Analytics 
Pty. This system was developed in Australia primarily for residential solar analytics, where about 
98 % of the almost 1.6 million solar systems installed on the continent are residential or commer-
cial and under 10kWp in size [3]. The addition of a simple monitoring device mounted in the resi-
dential electrical distribution box, along with weather data combined with the system configura-
tion, enables the use of statistical algorithms to detect fault conditions quickly. 

The second method to be discussed is described by Mike Green of the Israeli company 
M.G.Lightning Ltd. This method was developed with the intended purpose of accurately predict-
ing the next-day hourly yield of residential and commercial systems using energy or power pa-
rameters from the existing inverter data loggers and inexpensive hourly meteorological predic-
tions from nearby public weather servers containing no irradiation data. These algorithms, when 
used on the historical data from the same meteorological server for the finished production day, 
will inform the system owner of the system health, enabling the system owner to react quickly to 
a failing or failed system. 
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The third method to be discussed is also described by Mike Green of the Israeli company 
M.G.Lightning Ltd. This system works to predict faults before they occur, using clustering ma-
chine-learning algorithms applied to system-produced parameters retrieved from the existing 
inverter data loggers, inexpensive hourly meteorological predictions from nearby public weather 
servers containing no irradiation data and a variety of system-specific calculated values. These 
new algorithms predict the on-coming of a fault condition that will cause loss of revenue. Contin-
ued work on these algorithms should enable the prediction to be expanded to include the type of 
fault and a timeline for the future fault. 

The fourth system is described by Birk Jones of Sandia National Laboratories of the United States. 
It is an academic portrayal of initial work done using Artificial Neural Networks to enable fast, 
almost immediate detection of faults by learning the behavior of the system from the available 
inputs, and producing a behavior pattern to which incoming parameters are compared. If the 
incoming data from the PV system are not within the learned behavior parameters, a fault is ap-
parent. Three types of algorithms were developed and tested with good results.  

It is apparent from the four systems described in this report from three research and develop-
ment centers, which are independent of each other and situated equally across 17 time zones, 
each serving their perceived market, that the state of the art for monitoring PV systems is moving 
from a sensor-based system to one of statistical calculations performed on system production 
parameters. This development comes about due to the granular nature of PV electricity genera-
tion in a national grid. The total PV electricity generated in a national grid is largely supplied by 
many small systems with small financial plans that cannot support high-efficiency monitoring on 
their own. Statistical analysis requires no hardware, so the cost of the monitoring is flexible.  

As the world moves towards distributed generation with multi-directional power flow within dis-
tribution grids, these statistical methods will become crucial to retain efficiency and predict the 
electricity yield.  
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2 Smart Monitoring of Residential Solar  

Jonathan Dore 
Australia 

At time of writing, the PV market in Australia includes close to 1.6 million PV systems, 98 % of 
them rooftop systems with less than 10 kWp of installed power [4]. This amount of PV energy 
injected into the grid creates many challenges to the grid operators. This great uptake of rooftop 
PV by residential grid customers in Australia is a result of a combination of high irradiance, sup-
portive policy and residential electricity prices averaging AUD 0.21 to 0.38/kWh and peaking at 
AUD 0.50/kWh.  

With more than 20 % of residential households generating power from their rooftops, there is a 
significant investment and influence on the grid that would benefit from monitoring. With stand-
ard installed hardware, small-system owners are not able to monitor or predict yield with any 
accuracy or at all.  

In Australia, satellite irradiance and weather data are available from the national weather service 
free of charge. This available information coupled with accurate readings of the energy feed at 
the level of the residential electric power-meter box enables some powerful statistical calcula-
tions that can aid the system owner to quickly determine that their system is not producing as it 
should. 

Motivated by feed-in tariffs or self-consumption, the system owner has a strong interest in learn-
ing of faults as soon as possible to ensure expected revenue from the system. Methods used for 
fault detection in small systems, where no irradiation sensors exist, depend primarily on assump-
tions as to what the system should be producing. Accuracy of these estimates is improved by 
comparing with production estimates based on weather and nearby system data. The statistical 
tools described here use both available irradiance and weather data and the behavior of the plant 
itself to ascertain normal behavior, and to understand what is wrong when behavior is abnormal. 

2.1 System Inputs 

The system owner or installer is responsible for supplying the system parameters such as: 

Á Location 
Á PV module type 
Á Inverter type 
Á PV module orientation  
Á PV module tilt  
Á String configuration 

Additional monitoring hardware is added to the system, as shown in Figure 1, to acquire the elec-
trical parameters from the inverter. The acquired parameters available for statistical analysis in-
clude: 

Á Current 
Á Voltage  
Á Frequency 
Á Active energy over 5 seconds 
Á Reactive energy over 5 seconds  
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Figure 1: AC Power data from the inverter is acquired by a monitor mounted in the power meter 
box 

Meteorological data and satellite irradiance maps are supplied by the national weather service. 
Temperature and wind-speed are supplied in 30-minute intervals. The irradiance data is supplied 
as a daily aggregate of satellite-derived global horizontal irradiance  

2.2 Electricity Generation Estimation 

The daily irradiance data is further manipulated using algorithms developed in collaboration with 
the University of New South Wales for: 

Á temporal irradiance separation 
Á direct/diffuse irradiance separation 
Á plane-of-array irradiance transposition  

Using these algorithms, an hourly plane-of-array irradiance is calculated for each hour of the day. 

The one-sun power of the specified modules is de-rated according to the available plane-of-array 
irradiance and then a temperature de-rating is applied as a function of manufacturer-specified 
temperature coefficients, ambient temperature, wind-speed, mounting configuration and irradi-
ance.  

The expected module power is then aggregated across each string in the system to obtain a total 
DC power for a given inverter input. The AC power is then calculated, applying a further de-rating 
based on manufacturer-specified inverter efficiency and limited by maximum inverter output. 

The power is calculated for the mid-point of each hour and used as an average to calculate the 
generated electricity for that hour. 

2.3 Real-Time Monitoring 

The PV generation is assessed every hour to determine if the site is online and producing. If the 
power is negligible, an alarm is sent to the system owner. 

At the end of each day, the daily energy generation is compared with the values calculated from 
the system parameters. If the performance is lower than expected, diagnostic algorithms are run 
and an alert is sent. 

2.4 Performance Losses 

Diagnostics are run on the system when the production is lower than the calculated production 
values. The analytics then compares the fault signal with known fault signatures to identify the 
likely cause of the underperformance. Some examples of fault finding include: 
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2.4.1 Shading 

Power generation patterns are assessed over a period of time to determine when a system is 
shaded and to properly account for shading losses in the simulated yield profile. 

Since the parameters supplied by the system owner do not include shading elements, statistical 
methods are used to account for shading in the daily yield simulations, taking into account sea-
sonal changes in the shading elements. Consistent deviations from the ideal expected energy 
curve are calculated using a rolling window of input data and this loss is assumed to be due to 
shading. The loss is then projected onto each day, taking into account the expected ratio of dif-
fuse to direct sunlight in order to refine the expected loss for that particular day. 

In Figure 2, the calculated electricity generation is shown as the sum of both the white and gray 
areas. The white area is what is measured by the system; the gray area is what was expected from 
calculating the electricity generation. When this deviation is observed consistently, it is assumed 
to be due to shading, and the electricity generation as portrayed by the white area of the graph is 
assumed to be the expected electricity generation for the system. 

  

Figure 2: Accounting for shading losses 

2.4.2 Inverter Clipping  

Section 2.2 ŘŜǎŎǊƛōŜŘ ǘƘŜ ǇǊƻŎŜǎǎ ōȅ ǿƘƛŎƘ ǘƘŜ ǎȅǎǘŜƳΩǎ ŜƴŜǊƎȅ ƻǳǘǇǳǘ ƛǎ ŜǎǘƛƳŀǘŜŘΦ The final step 
is to convert the DC power of the array to AC power from the inverter. If, after efficiency de-
rating, the expected output of the inverter is higher than the manufacturer-specified maximum, 
then the inverter limits the expected output to that maximum. This is known as inverter clipping 
and reflects the reality of many systems for which the nominal array capacity is close to or larger 
than the inverter capacity. Some potential electricity generation will be lost, particularly on the 
sunnier days of the year. The amount of potential energy lost is calculated by the algorithm and 
can be reported to the customer. 

2.4.3 Power Factor Correction 

In some regulatory jurisdictions, grid stability requires the production of reactive power by the PV 
system. If the maximum inverter capacity is larger than the vector sum of the reactive power and 
real power produced by the inverter, then no significant production loss is noticed by the system 
owner, but if the inverter capacity is not sufficient, then both the real and reactive power output 
is reduced. This is a similar situation to that of inverter clipping and can likewise be accounted for 
and reported to the customer. 
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2.4.4 String/Module faults 

If a step change in performance is detected or a constant underperformance exists after system 
commissioning, the performance loss is compared to the expected output from each string and 
subarray (one subarray per MPPT input) to determine if a string fault is a likely cause. If the per-
formance loss is equal to or greater than the expected output of one or more strings, then a string 
fault is suspected. If the system consists of two or more subarrays facing different directions, then 
comparison of the daily profiles for both expected and measured energy can assist the identifica-
tion of the faulty array.  

  

Figure 3: Finding faults in strings without string monitoring 

2.4.5 Excessive Soiling 

Some soiling is expected and is usually washed away well enough with heavy rain so that regular 
cleaning is not required. However, some systems accumulate excessive soiling when heavy rains 
are rare, particularly under the following circumstances: 

¶ systems in dusty areas 

¶ systems near the sea (causing salt accumulation) 

¶ modules with low tilt angle (less effective natural washing) 

¶ systems under bird/bat flight paths 

This can be detected by a mild degradation of performance over several months followed by a 
sharp improvement after heavy rainfall is recorded. In these cases, the system owner can be ad-
vised as to when to wash the modules. 

2.4.6 Degradation 

Degradation of power output is expected over time (usually ~0-1 % relative reduction per year). 
Such changes are taken into account in the energy estimations for every day. When performance 
degradation is significantly above this rate, then module faults (e.g. Potential Induced Degrada-
tion (PID)) are suspected. System owners are advised of likely causes and how to proceed to check 
for discoloration of modules or to organize for their installer to conduct on-site low-light voltage 
tests to confirm if PID is a cause. 

2.5 Effect of the monitoring resolution 

Differing conclusions can be drawn, depending on the resolution of the data analyzed and on 
whether site-specific output estimations are used. The following fault analysis demonstrates this 
phenomenon. 

In Figure 4 we compare output from two inverters, Inverter 1 and Inverter 2, from different sys-
tems ς where Inverter 2 is expected to produce less than Inverter 1, so lower daily output is ex-
pected. 

Energy ex-
pected from 
the smaller of 
two subarrays 
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Figure 4: Comparison between two inverters of different sizes 

However, comparison with site-specific estimations suggests that inverter 2 has poorer perfor-
mance when each inverter is compared with the simulation of the daily production as shown in 
Figure 5. 

 

Figure 5: Comparison between each inverter and its expected production 

In Figure 6 we see the daily production in a scatter plot with hourly values. These hourly values on 
a clear day suggest that the poor performance is not consistent over the day. Shading would 
therefore appear to be a likely cause. 

 

 

Figure 6: Overlay of inverter 1 and inverter 2 graphs with 60 minute resolution 
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However, 5-minute resolution of Inverter 2 power parameters shown in Figure 7 portrays severe 
drops in output, lower than would be expected by shading, but it is not clear yet what fault might 
be causing this behavior. 

 

Figure 7: Overlay of inverter 1 and inverter 2 graphs with 5 minute resolution 

Using 5-second resolution in Figure 8 below we see that the inverter switches off for regular peri-
ods, suggesting that it is tripping off, apparently due to a malfunction.  

 

Figure 8: Power graph for inverter 2 with 5 second resolution 

Voltage data as portrayed in Figure 9 suggests that the cause of the tripping is grid over-voltage 
(the limit for this jurisdiction is 10 mins > 255 V or 0.2 sec > 262 V) 

 

Figure 9: Overlay of power and voltage graphs for inverter 2 with 5 second resolution 
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2.6 Conclusions 

Monitoring of residential solar PV generation, combined with statistical evaluation of the data 
enables the system owner to acquire real-time data and in-depth analysis of the system health, 
based on a comparison between the predicted hourly production and the actual monitored pro-
duction. 

¢ƘŜ ǎȅǎǘŜƳ ŘŜǇŜƴŘǎ ƻƴ ǘƘŜ ŀōƛƭƛǘȅ ǘƻ ǎƛƳǳƭŀǘŜ ǘƘŜ ŘŀȅΩǎ ǇǊƻŘǳŎǘƛƻƴ ōŀǎŜŘ ƻƴ ǎƻƭŀǊ ƛǊǊŀŘƛŀǘƛƻƴ 
data and the monitoring of the AC energy input to the local electrical power-distribution box.  

The system owner has only to install the modular data monitor in the electrical power-distribution 
box and to describe the PV system configuration in a web-based input form. The cloud-based 
monitoring system collects the energy data and acquires the irradiation and meteorological data 
for the day past, then performs the simulation.  

The algorithms complete the simulation of the electricity generation by statistically comparing the 
actual yield with the simulation and correcting for shading and other elements that cannot be 
input by the owner.  

The algorithms are applied to a profile of the system that enables an understanding of unusual 
behavior and the consequent classification of this behavior as a solvable problem, such as loss of 
string production in an MPPT input. 

High-resolution data, recorded at intervals down to 5 seconds, is stored for analyzing the cause of 
any loss of revenue that may be found by this monitoring system. 
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3 Machine Learning for Fast Fault Recognition 

Mike Green and Eyal Brill 
Israel 

¢Ƙƛǎ ƳŜǘƘƻŘ ǿŀǎ ŘŜǾŜƭƻǇŜŘ ǿƛǘƘ ǘƘŜ ƛƴǘŜƴŘŜŘ ǇǳǊǇƻǎŜ ƻŦ ŀŎŎǳǊŀǘŜƭȅ ǇǊŜŘƛŎǘƛƴƎ ǘƘŜ bŜȄǘ 5ŀȅΩǎ 
Hourly (NDH) yield of residential and commercial systems using existing inverter data loggers and 
inexpensive hourly meteorological predictions from nearby public weather servers.  

.ŜŦƻǊŜ ǘƘŜ ά{ƻƭŀǊ .ƻƻƳέ, grid managers knew exactly how much power was to be delivered every 
hour the next day by each power plant on the grid. The grid manager would also pay for some 
generators to run without producing energy, as a spinning reserve to be used if the consumption 
changed from that forecast. 

As PV energy becomes more common, the uncertainty increases, requiring more expensive spin-
ning reserve. Utilities and regulators can insist that large, industrial-sized PV plants pay for predic-
tion services based on irradiation maps and hourly simulations, even incurring penalties if the 
prediction is incorrect. This is not possible in the case of the small residential PV system owner. 
These systems, usually under 10 kWp in size, are not equipped with the hardware or software to 
enable accurate predictions and for the most part, irradiation maps are not available. However, 
some neighborhoods have become multi-megawatt PV power stations, with many tens of sepa-
rate systems each consisting of different combinations of inverters, modules, orientations, inclina-
tions and even functionality.  

Unlike the case of large commercial systems, a large neighborhood system aggregated of many 
small systems is characterized by large variability of daily results when compared to the theoreti-
cal results. This is mainly due to two reasons. First, small systems are affected by any change of 
conditions, the difference between individual locations is large and this yields a difference in pro-
duction. Second, the quality of maintenance is not the same for all systems. As a result of this 
variability a theoretical model which fits all systems is not applicable. If one would like to achieve 
daily prediction with high accuracy in spite of the above conditions, a different approach must be 
taken.  

One of the possible approaches uses Machine Learning Technology (MLT). The MLT is a set of 
ƳŀǘƘŜƳŀǘƛŎŀƭ ŀƭƎƻǊƛǘƘƳǎ ǿƘƛŎƘ άƭŜŀǊƴǎέ ǘƘŜ ǊŜƭŀǘƛƻƴ ōŜǘǿŜŜƴ Ǉŀǎǘ ƛƴǇǳǘǎ ŀƴŘ ƻǳǘǇǳǘǎ ƻŦ ŀ ǎȅǎǘŜƳ 
and tries to predict future outputs based on future inputs. It is important to note that the result of 
ǘƘŜ άƭŜŀǊƴƛƴƎέ ǇǊƻŎŜǎǎ ƛǎ ŀ ǎǇŜŎƛŦƛŎ ǊŜƭŀǘƛƻnship for each system. This specific relation is called άŀ 
ƳƻŘŜƭέΦ ! ƳƻŘŜƭ ƻŦ ŀ ǎȅǎǘŜƳ ƛƴ ǘƘƛǎ ŎŀǎŜ ƛǎ άLƴǾŜǊǘŜǊ-ōŀǎŜŘέΦ ¢Ƙǳǎ ƛǘ ǊŜŦƭŜŎǘǎ ǘƘŜ ǎǇŜŎƛŦƛŎ ŎƻƴŘƛǘƛƻƴ 
under which the inverter is working (e.g. geographic location, weather, tilt , azimuth, etc.). It also 
reflects the specific hardware characteristics of each inverter. If for example two originally identi-
cal inverters (i.e. produced by the same manufacturer at the same time) receive different mainte-
nance, the result should be reflected in the model.  

As explained in Chapter 3.2, the MLT described uses ŀ άwŜƎǊŜǎǎƛƻƴ ¢ǊŜŜέ όw¢ύΦ ¢ƘŜ w¢ ǳǎŜǎ ƻƴƭȅ 
the power or energy parameters from the inverter data logger and meteorological predicted data 
available from public weather servers.  

Since the system can accurately predict the NDH yield, these algorithms, when applied to the 
ƘƛǎǘƻǊƛŎŀƭ Řŀǘŀ ŀŎǉǳƛǊŜŘ ŦǊƻƳ ǘƘŜ ǎŀƳŜ ǿŜŀǘƘŜǊ ǎŜǊǾŜǊ ŀǘ ǘƘŜ ǎŀƳŜ ǘƛƳŜ ŀǎ ƴŜȄǘ ŘŀȅΩǎ ǇǊŜŘƛŎǘƛƻns, 
can ascertain if the system performed as it should have. If not, the system owner can be notified 
to examine the system. 
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3.1 System inputs 

The only required input from the system owner is hourly energy or power parameters from the 
inverter.  

From an online weather server near the PV system, the following parameters are collected from 
ǘƻŘŀȅΩǎ ƘƻǳǊƭȅ ƘƛǎǘƻǊƛŎŀƭ Řŀǘŀ ŀƴŘ ǘƻƳƻǊǊƻǿΩs hourly predictions: 

Á Temperature 
Á Humidity 
Á Barometric pressure 
Á Wind speed 
Á Dew point  
Á Rain 
Á Sky view (amount of sky covered by clouds) 

All variables are continuous variables except the last one, which is a category variable that de-
scribes the sky state (clear, partial cloudy, cloudy, rain, fog etc.).  

¢ƘŜ ǎŜǊǾƛŎŜ ǘƘŀǘ ǿŀǎ ǳǎŜŘ ƛƴ ǘƘŜ ŘŜǾŜƭƻǇƳŜƴǘ ƻŦ ǘƘŜǎŜ ŀƭƎƻǊƛǘƘƳǎ ƛǎ ǘƘŜ ά²ǳƴŘŜǊDǊƻǳƴŘέ 
Weather Service (WWS). This a low-cost service with open Application Programming Interface 
(API) which gives easy access to real historical data and future weather prediction based on hourly 
results.  

Figure 10 presents two maps of WWS weather stations located in the north and the center of the 
state of Israel.  

  

Figure 10: WunderGround weather stations.  

The WWS is accessible using a public API as described in the WWS website (see 
https://www.wunderground.com/weather/api/ for details). Output can be requested in a variety 
of file formats such as CSV, JSON or XML and can be easily processed by any .Net language.  

3.2 Theoretical Background 

Our first attempts to formulate learning algorithms used local linear regression. This did not sup-
ply satisfactory results, due to the manner in which such a method dealt with relatively extreme 
changes such as those experienced during the change of seasons. When saved in the learning data 
base, these values further confused the learning process.  
































































