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Foreword

The International Energy Agency (IEA), founded in November 1974, is an autonomous body within

the framework of the Organization for Economic-@eration and Development (OECDhigh

carries out a comprehensive programme of energyoperation among its member countries.

The European Union also patrticipates in the work of the IEA. Collaboration in researchpédevelo

ment and demonstration of new technologies has been an importatta 2 ¥ (K S- | 3Sy Oe
gramme.

The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative R&D Agre
ments established within the IEA. Since 1993, the PVPS participants have been conductig a vari
ty of joint projects in the applicatioaf photovoltaic conversion of solar energy into electricity.

The mission of the IEA PVPS Technology Collaboration Programme is: To enhance the mternatio
al collaborative efforts which facilitate the role of photovoltaic solar energy as a cornerstone in
the transition to sustainable energy systerfitie underlying assumption is that the market for PV
systems is rapidly expanding to significant penetrations ingpithected markets in an increasing
number of countries, connected to both the distribution nettk and the central transmission
network.

This strong market expansion requires the availability of and access to reliable information on the
performance and sustainability of PV systems, technical and design guidelines, planning methods,
financing, etc.to be shared with the various actors. In particular, the high penetration of PV into
main grids requires the development of new grid and PV inverter management strategies, greater
focus on solar forecasting and storage, as well as investigations of thera@and technological
impact on the whole energy system. New PV business models need to be developed, as the d
centralised character of photovoltaics shifts the responsibility for energy generation more into the
hands of private owners, municipalitiesties and regions.

IEA PVPS Task 13 engages in focusing the international collaboration in improving the reliability of
photovoltaic systems and subsystems by collecting, analyzing and disseminating information on
their technical performance and failureproviding a basis for their technical assessment, and
developing practical recommendations for improving their electrical and economic output.

The current members of the IEA PVPS Task 13 include:

Australia, Austria, Belgium, China, Denmark, Finland, Fr&®senany, Israel, Italy, Japan, Mala
sia, Netherlands, Norway, SolarPower Europe, Spain, Sweden, Switzerland, Thailand and the Uni
ed States of America

This report focusses on new methods for clgsaonitoring PV systenisy using the existing data
produced by the system for statistical analySisiswill enable system owners and maintenance
personnel to quickly ascertain a fault condition, even before the fault oagitihssome methods
thereby increasin@V systenavailability.

The editors of thedocument areMike Green of M.G.Lightningtd, Israel and Boris Farnung,
Fraunhofer ISE, Freiburg, Germany

The report expresses, as nearly as possible, the international consensus of opinion of the Task 13
experts on the subject dealt with. Further infoation on the activities and results of the Task can
be found at: http://www.ieapvps.org.
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Executive Summary

Availability high efficiency and therefore fault detection are of eqimportance to the PV sy
tem owner and the grid managdor utility-grade PV and increasingly for the small resit
array.With increasing penetration of small arrays, large neighborhoods aggregate to virtgal me
awatt power stations, creating an amorph®and unpredictable powetproducing entity.

Achieving and maintaining high efficiensythe responsibility of the system owner. Large PV

plants are business units in and of themselves and are managed accordingly. Commercial, small

industrial and esidental systems are usually erected on independent rooftops with no immediate
professional overght as to daily maintenance. Few small systems edfectively moritored. At
best, the system owner monitors the invertand is made aware of faults to the lewadl awale-
ness that sule monitoring is capable of achieving.

The simplicity of the PV system in comparison to other enprggucing systems makes for diff
cult fault monitoring. Electrity generdion in a turbine of any type, for example, entails many
moving parts, different pressure levels, changing angles and speedgoiBtt cefined for sen-
sors on these critical elements in the system can vadimpending system failure. The P\&tsyn

has only meteorological input and electrical output. No paraanetare available for monitoring
with a setpoint other than the energyeadingsandthe accompanying electrical parametesgp-
plied by theelectricity geneation. Smart meters and new inverter technologies allow monitoring
and communications, opening tteeope for improved monitoring and analytics at the smadl sy
tem level. Inverter manufacturers and independent monitoring services supply simple ntetrics
aid in ascertaining system health such as inverter comparison (when more than one inverter e
ists) amd PR calculation (when irradiee values are available)his report examines four new
methods using increasingly advanced statistical analysis of the systpplied parametersto
enablequicker and more exact alerts, particularly for the residential@ystaintained by non
professionals By being technology independenthe methodshave applications for gritkvel
integration of distributed energy.

The first system for residential solar analytics was developed in Austsdl@e solar irradiation
data B made available free of charge by the governmeértis system comprises a simple energy
meter installedon the PV system feed into the electripalwer-distribution boxthat collects data.
Using statistical analysis, the data on generatésttricityis mmpared to an expectedeneration
profile from the irradiation data and system configuration. The system owner has access-to
time electricitygeneration data and fault diagnosis that identifies issues and what to check if pe
formance was not asxpected.

¢tKS aSO2yR &aeaiuSy dzasSa YIOKAYS €SI bigghmayf @s (0 2
dential systems for aggregation into virtual neighborhood power plants for the benefit of grid
managersThis system requires only inverter data feed to tlgetem serverThe algorithms work

on the inverterfeed and meteorological predictioextractedfrom commercially available met
orological servers. No irradiation data or system configuration data is required. Applying these
alNA 0 KYa 2y weather hiSoNRas 8pRased to weather predictions, producesnan i
medate indicationof system health. Tracking daily system heatithich issimplified toqualita-

tive ratingsfrom A to Fenableseven the smallest system to positively ascertain tin@tsystem is
performing as expected or that a service call should be made.

Fault prediction is the topic of the third system described in this repehich is also basedn
machinelearning algorithmsQustering statistical methods are used to predict futdesilts that
will affect power production. This system requires only an inverter data feed and acckstdo
icalmeteorological data&xtractedfrom commercially available meteorological servers. No ieradi
tion data or system configuration data is reqqdr This system has proven so far to predict future

8
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loss due to faults, though work continues to classify the specific fault that will occur in order to
enable the owner to undertake appropriate preemptive corrective action.

The last system to be describedthis reportdemonstrates promising application aftificial neu-

ral networks. These algorithms learn the behavior of the system from the available inputs. This
learned behaior is compared to incoming retime parameters from the system, enablidgtec-

tion of faults much faster than existing methods in the field today such as Performance Ratio,
Power Perfomance Index or inverter comparison, for exampleth& time of writing, the devd-

oped algorithms have produced good results in the test systénisire work requires that the
algorithms be applied to datiom various seasons and locatioasd combinedvith more testing

and development to detect a wider variety of fault conditions.



1 Introduction

PV systems have come of age to the extent thaeR&fgy penetration into national electrical grid
systems has reached double digit percentgé total electricity generationin some countries.
GridconnectedPVelectricity generatiorbegan on the residential roof tgugmentingelectricity
generationwhile followinga healthy gridand shutting down when the distribution grid leftc-
ceptable parameteror voltage or frequencyFrom residential systems of a few kilowatts in size,
PV arrays grew to commercial systems of tens and hundreds of kilowadtsptbgressed tautili-
ty-grade PV power stations of tens of megawatts. Small residential systems inrsoghda-
hoodsaggregate to virtual power plants of some megawatts in,sizele utility-grade PV power
plants in some countries are no longer allowedshut down when the grid is stressed, but must
support the grid, producing reactive energy to aid in grid stabilization.

Utility-grade PV power plants aggowing in size, yet residential PV systems outstrip them in most
countries, certainly in numbeand even in total installed capacity. The utigsade PV plant is
increasingly being treated as a conventional power plamd the developers/owners of these
industrially sized and maintained plantan negotiate with the utilities on mutually accepted
terms that meet the business plan of both parties. Residential PV, however, leaves the utility with
many challenges. Before the advent of the current popularity of PV in the residential market, res
dents would purchase a certain amount of electrical endrgs a given utility. At some point the
residents began installing PV systems on their roof tops. The utility now sells less energy to these
household, decreasing profits. However, these PV systems produce electricity by the whims of the
weather, creatinguncertainty in the amount of reserve energy the utility grid manager must have
on hand at any given time, requiring higher levels of spinning res&he utility faces new cha
lenges in meeting uncertain demand with uncertain supply and tighter conttraimvoltage and
frequency control.

The loss of revenue due to distributed generatiavhichrequiresregulators to rethink tariff sy

tems to reflect the evolving modern distriban grid that includes distributed generatiooannot

be dealt with in thescope of this reportHowever,challenges with integrating distributed energy
generation can be reduced using the methods reported here, by enabling the utility grid manager
to better forecastelectricity generatiorfrom residential neighborhoodsind by geatly increasing

the availability and lowering Forced Outage Rate (FOR) of the neighborhood as a virtual multi
megawatt power plant.

From the point of view of the system owner, low availability and low efficiency translate directly
to loss of revenuevenmore so thanfor the grid manager, particularly for larger systems under
scrutiny from financial agencies demanding performance reviews that match expectations. Early
fault detection enables the system owner to act quickly to repair the faudtreby retining eff-

ciency and couldpreventexcessive abnormddehaviorthat can lead to major damagediuding

fire and electric shock.

Early monitoring of PV systems encomgass the simple collection of parameters such as power,
voltage, currentetc., from the inverter. Different inverter manufacturers offered different data
sets. As systems grew to commercial sizes with business plans under commercial scrutiny, solar
irradiation sensors became more common, enabling the calculation of a performance ratio to
enable system owners to understand the overall efficiency of their systems. Professional suppliers
of monitoring services can now plot the power produced against the solar irradiati@al time

In system<consistingof more than one inverter, it has beocee common for monitoring services
to supply a daily comparison of the inverters in the system. Since in many systems the inverters
are not all of the same size, and even when of the same size they are not always loaded with the
same number omodules on tle DC side, the monitoring service must first normalize the param
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ters to be used. This normalization is the ratio of the parameter in use to the afes ofodule
measured in square meters, producing a value for a single square meter, or to the ingtalled
of the modules. The normalized parametés then easily compared that from other inverters.

Monitoring for large systems [1] with larger budgets that are funded by financial institutsons
backed bythe financial capacity and the motivation to install more complex monitoring hardware
elements such as string monitoring, coupled with custom monitoring softwiares combination
enables alarms on loywroducing strings or the use of weatheorrected peformance ratio me

rics [2] that offer amore accurateperformance ratio based omodule temperature as well as
solar irradiation. As a result, all large PV installations are typically well monitored for efficiency
and availabilityenabling early detectioof fault conditions or low efficiency.

Until recently however, for small residential systems there has not been setfestive solution
for monitoring and fault detection. As a result, the reality for smsgitem efficiency is that faults
are often nd discovered for some weeks or months, usualer the delivery and analysis of the
monthly or quarterly electric bill.

Unlike utility-scale or large commercial systems, the cost of monitoring for singkrter systems

has been prohibitive. With indemdent single inverters, as for a large percentage of residential
systems,t has not been possible to do an inverter comparison, performance ratio calculation or
any other metric showing that the system could be producing more thdialitThis reality haled
many smaklsystem owners to have no monitoring at all, since simpbsteffective method for
ascertaining system healihiere notavailable.

With smart metering, new inverter technologies and clebatked data sharing, new opportunities

for smart nonitoring of residential solar installations are emerging. This report will describe four
methods for statistical analysis of the parameters supplied by a PV system that will enable system
owners to understand their system performance better and to idgntihether and when their
system is losing revenue. At the same time, monitoring can indaiskof impending faults,
thereby increasing availability, and inform the grid manager of intermittent supply, redtiuing
Forced Outage Rate and increasingdiceability.

This report attempts to show a departure from classic system monitoring based on comparing
system parameters to sensor outputs or the dependence on relatively costly seaseel meh-

ods for detecting dropping efficiency, towards dependeoncereadily available system param

ters and their statistical relativity. Four methodologies are described, arguably from the least to
greatest mathematical complexity. The order does represent the developetaainology with

the first system being devebed earlier than the rest and consequently being longer in the field;
the last system describddstill in the academic stages.

The first methodology is described by Jonathan Dore, of the Australian company Solar Analytics
Pty. This system was develop@u Australia primarily for residential solar analytics, where about
98 % of the almost B million solar systems installed on the continent are residential or camme

cial and under 10kWp in size [3]. The aubgiitof a simplemonitoring devicemounted in theres-

dential electrical distributiorbox, along with weather data combined withe system configua-

tion, enables the use of statistical algorithms to detect fault conditions quickly.

The second method to be discussed is described by Mike Green of the Israeli company
M.G.Lightning-td. This method was developed with the intended purpose of accurately predic

ing the nextday hourly yield of residential and commercial systems using er@mrgpwer [a-
rameters from the existing inverter data loggers and inexpensive hourly meteorologicat-predi
tions from nearby public weather servers containing no irradiation data. These algoyitimsa

used on the historical data from the same meteorologmver for the finished production day

will inform the system owner of the system health, enabling the system owner to react quickly to
a failing or failed system.

11



The third method to be discussed is also described by Mike Green of the lIsraeli company
M.G.Lightning_td. This system works to predict faults before they occur, using clusteraeg m
chinelearning algorithms applied to systepmroduced parameters retrieved from the existing
inverter data loggers, inexpensive hourly meteorological predictions fnearby public weather
servers containing no irradiation data and a variety of sysspecific calculated values. These
new algorithms predict the csoming of a fault condition that will cause loss of revenue. @enti

ued work on these algorithms should &rle the predictiorto be expandedo include the type of

fault and a timeline for the future fault.

The fourth system is described by Birk Jones of Sandia National Laboratories of the United States
It is an academic portrayal of initial work done usingjfisial Neural Networks to enable fast,
almost immediate detection of faults by learning the behavior of the system from the available
inputs, and producing a behavior pattern to which incoming parameters are compared. If the
incoming data from the PV stem are not within the learned behavior parameters, a faultps a
parent. Three types of algorithms were developed and tested with good results.

It is apparent from the four systems described in this report from three research and gevelo
ment centers which areindependent of each otheand situated equally across 17 time zones,
each serving their perceived markéhat the state of the art for monitoring PV systems is moving
from a sensobased system to one of statistical calculations performed on systmduction
parameters. This development comes about due to the granular nature eldetficity genea-
tion in a national grid. fie total PVelectricity generatedn a national grid isargelysuppliedby
many small systems with small financial plans tteatnot support higkefficiencymonitoring on
their own. Statistical analysis requires no hardwaathe cost of the monitoring is flexible.

As the world moves towards distributed generation with mditiectional power flowwithin dis-
tribution grids, hese statistical methodwill become cruciato retain efficiency and predidhe
electricityyield.

12



2 Smart Monitoring of Residential Solar

Jonathan Dore
Australia

At time of writing, thePV market in Australiancludes close to .6 million PV system8 % of

them rooftop systemswith less thanl0 kWp of installed power4]. This amount of PV energy
injected into the grid creates many challenges to the grid operators. This great uptake of rooftop
PV by residential grid customers in Australia is a redudt combination of high irradiance, [su
portive policy and residential electricity prices averaging AM to Q38/kWh and peaking at
AUD 050/kWh.

With more than 20 of residential households generating power from their rooftops, there is a
significant investment and influence on the grid that would benefit from monitorigth stard-

ard installed hardware, smadlystem owners are not able to monitor or predict yield with any
accuracy or at all.

In Australia, satellite irradiance and weather data are available from the national weather service
free of charge. This available information coupled with accurate readings of the efeedat

the level ofthe residential electrigpowermeter boxenables some powerful statistical caleul

tions that can aid the system own#&r quicklydeterminethat their system is not producing as it
should.

Motivated byfeed-in tariffs or selfconsumption, the system owner has a strong interest inrflear

ing of faults as®n as possible to ensure expected revenue from the system. Methods used for
fault detection in small systems, where no irradiation sensors exist, depend primarily onm@ssum
tions as to what the system should be producing. Accuracy of these estimatesrvauy
comparing with production estimates based on weather and nearby system data. The statistical
tools described here use both available irradiance and weather data and the behavior of the plant
itself to ascertain normal behavior, and to understanidatvis wrong when behavior is abnormal.

2.1 System Inputs

The system owner or installer is responsible for supplying the system parameters such as:

Location

PV moduldaype
Inverter type

PV moduleorientation
PV moduldilt

String configuration

I v > D

Additional montoring hardware is added to the system, as showFigurel, to acquire the ele-
trical parameters from the inverter. The acquired parametavsilable for statistical analysis-i

A Curent

A Voltage

A Frequency

A Activeenergy over 5 seconds
A Reactiveenergy over 5 seconds

13
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Solar House Power Statistical Weather Client
Panels Load Meter Algorithms Data Interface

analyze

Figurel: AC Power data from thieverter is acquired bg monitor mounted in the power meter
box

Meteorological data and satellite irradiance maps are supplied by the national weather service.
Temperature and wingpeed are supplied in 3@inute intervals. The irradiance data is supplied
as a daily aggregate of satelliderived global horizontafradiance

2.2 Electricity GeneratiorEstimation

The daily irradiance data is further manipulated using algorithms developed in collaboration with
the University of New South Wales for:

A temporal irradiance separation
A direct/diffuse irradiance separation
A planeof-array irradiance transposition

Using these algorithman hourly planeof-array irradiance is calculated for each hour of the day.

The onesun power of the specified modules is-tged according to the available plawd-array
irradiance and then aemperature derating is applied as a function of manufactusgrecified
temperature coefficients, ambient temperature, wispeed, mounting configuration and irriad
ance.

The expected module power is then aggregated across each string in the systemitoaotutal
DC power for a given inverter inputhe AC power is then calculated, applying a furtheraling
based on manufacturespecified inverter efficiency and limited by maximum inverter output.

The power is calculated for the mpbint of each houand used as an average to calcultte
generated electricityor that hour.
2.3 RealTimeMonitoring

The PV generation is assessed every hour to determine if the site is online and producing. If the
power is negligible, an alarm is sent to the system owner.

At the end of each day, the daily energy generation is compared with the values calculated from
the system parameters. If the performance is lower than expected, diagnostic algorithms are run
and an alert is sent.

2.4 Performance Losses

Diagnostics are run othe system when the productiois lower than the calculated productio
values. The analytics then compares the fault signal with known fault signatures to identify the
likely cause of the underperformance. Some examples of fault finding include

14



2.4.1 Shading

Power genertion patterns are assessed over a period of time to determine when a system is
shaded and to properly account for shading losses in the simulated yield profile.

Since the parameters supplied by the system owner do not include shading elersititstjcal
methods are used to account for shading in the daily yield simulations, taking into acceunt se
sonal changes in the shading elements. Consistent deviations from the ideal expected energy
curve are calculated using a rolling window of input datal this loss is assumed to be due to
shading.The loss is then projected onto each day, taking into account the expected ratit of di
fuse to direct sunlight in order to refine the expected loss for that particular day.

In Figure2, the calculatecelectricity generatioris shown as the sum dioth the white andgray
areas. The white area is what is measured by the systengréngarea is what was expged from
calculating theelectricity generation When this deviation is observed consistently, it is assumed
to be due to shading, and thedectricity generatioras patrayed by the white area of the graph is
assumed to be the expectaectricity generabn for the system.

10000
9000
8000
7000
6000

5000

Shaded
4000

Energy (Wh)

Hourly Measured
3000 QHourly '

2000

1000

] — — — ~ - - ~ - ~ ~

[ f 8 9 10 11 12 13 14 15 16 17 18
Hou

Figure2: Accounting for shading losses

2.4.2 Inverter Clipping

SectioR2RSAONAOGSR GKS LINRPOSaa o0& ¢ KAOKThafikdstepe a0 SYC
is to convert the DC power of the array to AC power from the inveiteafter efficiency de

rating, the expected output of the inverter is higher than the manufacttgpecified maximum,

then the inverter limits the expected output to that maximuithis is known as inverter clipping

and reflects the reality of many systems for which the nominal arrayapis close to or larger

than the inverter capacitySome potentiaklectricity generatiorwill be lost, particularly on the

sunnier days of the yealhe amount of potential energy lost is calculated by the algorithm and

can be reported to the customer.

2.4.3 Power Factor Correction

In some regulatory jurisdictions, grid stability requires the production of reactive power by the PV
system.If the maximum inverter capacity is larger than the vector sum of the reactive power and
real power produced by the invest, then nosignificantproduction loss is noticed by the system
owner, but if the inverter capacity is not sufficient, then both the real and reactive power output
is reducedThis is a similar situation to that of inverter clipping and can likewisgcbeunted for

and reported to the customer.

15



2.4.4 String/Module faults

If a stepchange in performance is detected or a constant underperformance exists after system
commissioning, the performance loss is compared to the expected output from each string and
subaray (one subarray per MPPT input) to determine if a string fault is a likely datse.pea-
formance loss is equal to or greater than the expected output of one or more strings, then a string
fault is suspectedf the system consists of two or more srbays facing different directions, then
comparison of the daily profiles for both expected and measured energy can assidettidica-

tion of the faulty array

Solar Performance Assessment o Solar Performance Assessment -3

Production Savings Ratio Production Savings

. Energye

. pected from
;- the smaller of
K two subarrays

Savings Rate Since Installed ~ This Year Last 30Days = Last7Days  Custom Range

Figure3: Finding faults in strings without string monitoring

2.4.5 Excessive Soiling

Some soiling is expected aimusually washed away well enough with heavy rain so that regular
cleaning is not requireddowever, some systems accumulate excessive soiling when haiagy
are rare, particularlyinderthe following circumstances:

I systems in dusty areas

1 systems near the sea (causing salt accumulation)

1 modules with low tilt angle (less effective natural washing)
1 systems under bird/bat flight paths

This can be detected by mild degradation of performance over several months followed by a
sharp improvement after heavy rainfall is recorded. In these cases, the system owner cdn be a
vised as to when to wash theodules.

2.4.6 Degradation

Degradation of power output is expecteder time (usually ~Q % relative reduction per year).
Such changes are taken into account in the energy estimations for ever\Mi@y performance
degradation is significantly above this rate, thedule faults (e.g. Potential Induced Degead

tion (PID) are suspectedSystem owners are advised of likely causes and how to proceed to check
for discoloration ofmodules or toorganizefor their installer to conduct oisite lowlight voltage

tests to confirm if PID is a cause.

2.5 Effect of the monitoringresoluion

Differing conclusions cabe drawn,depending on the resolution of the datnalyzedand on
whether sitespecific output estimations are used@ihe following fault analysis demonstrates this
phenomenon.

In Figure4 we compare output from two inverters, Inverter 1 and Inverter 2, from differerst sy
tems ¢ where Inverter 2 is expected to produce less than Inverter 1, so lower daily outpxt is e
pected.
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Daily Energy

Energy (kWh)

Inverter 1 Inverter 2

® Measured Production
Figure4: Comparison between two inverters of different sizes

However, comparison with sitgpecific estimations suggests that inverter 2 has poorer perfo
mance when each inverter is compared with the simulation of the daily ptamuas shown in
Figureb.

Daily Energy

Energy (kWh)

Inverter 1 Inverter 2

Expected Production ~ mMeasured Production
Figure5: Comparison between each inverter and its expected production

In Figure6 we see the daily production in a scatter plot with hourly valdéese hourly values on
a clear day suggest that the poor performance is not consistent over theStading would
therefore appeaio be a likely cause.

Average Power (1 hour resolution)

—Inverter 1
Inverter 2

Power (kW)

5:00 AM
6:00 AM
7:00 AM
8:00 AM
9:00 AM
10:00 AM
11:00 AM
12:00 PM
1:00 PM
2:.00 PM
3:00 PM
4:00 PM
5:00 PM
6:00 PM
7:00 PM

Figure6: Overlay of inverter 1 and inverter 2 graphs with 60 minute resolution
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However, 5minute resolution of Inverter power parameters shown ifrigure?7 portrays severe
drops in output, lower than would be expected by shading, but it is not clear yet what fault might
be causing thibehavior

Average Power (5 min resolution)

—Inverter 1
Inverter 2

ES o

w

Power (kW)

N

—_

7

5:00 AM
6:00 AM \
7:00 AM
8:00 AM
9:00 AM
10:00 AM
11:00 AM
12:00 PM
1:00 PM
2:00 PM
3:00 PM
4:00 PM
5:00 PM
6:00 PM
7:00 PM

Figure7: Overlay of imerter 1 and inverter 2 graphs with 5 minute resolution

Using 5second resolution ifrigure8 below we see that the inverter switches off for regulariper
ods, suggestig that it is tripping off, apparently due to a malfunction.
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Figure8: Power graph for inverter 2 with 5 second resolution

Voltage dataas portrayed irFigure9 suggests that the cause of the tripping is grid eveitage
(the limit for this jurisdiction is 10 mins > 255 V & 8ec > 262 V)
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Figure9: Overlay of power ahvoltage graphs for inverter 2 with 5 second resolution
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2.6 Conclusions

Monitoring of residential solar PV generation, combined vétatistical evaluatiorof the data
enables the system owner to acquireattime data and indepth analysis of the system health,
based on a comparison between the predicted hourly production and the actual monitoced pr
duction.

¢tKS aeaisSYy RSLISYyRa 2y GKS FoAftAGe G2 aAavydZlaS
data and themonitoring of the AC energy input to the local eleatigower-distribution box

The system owner has only to install the modular data monitor in the elecpiosar-distribution

box and to describe the PV system configuration in a ivabed inputform. The cloudbased
monitoring system collects the energy data and acquires the irradiation and meteorological data
for the day past, then performs the simulation.

The algorithms complete the simuianh of theelectricity generatiorby statistically compargthe
actualyield with the simulation and correcting for shading and otheeneénts that cannot be
input by the owner.

The algorithms are applied to a profile of the system that erable understanding of unusual
behavior and the consequent classification of this behavior as a solvable problem, such as loss of
string production in an MPPT input.

Highresolution datarecorded at intervals dowio 5 second, is stored for analyzing thewase of
any loss of revenue that may be found by this monitoring system.
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3 Machine Learningdr Fast Fault Recognition

Mike Green and Eyal Brill
Israel

¢KAA YSUK2R ¢tFa RS@OStE2LISR ¢gAGK GKS AYydSYyRSR LJzN
Hourly (NDHYield of residential and commercial systems using existing inverter data loggers and
inexpensive hourly meteorological predictions from nearby pubéiativer servers.

. ST2NB KS,gidnfagelslkned éxacdy how much power was to be delivevedye

hour the next day by each power plant on the grid. The grid manager would also pay for some
generators to run without producing energy, as a spinning reserve to be used if the consumption
changed from that forecast.

As PV energy becomes more commdre tincertainty increases, requiring more expensive-spi

ning reserve. Utilities and regulators can insist that langdustrialtsized PV plants pay for predi

tion services based on irradiation maps and hourly simulations, even incurring penalties if the
prediction is incorrect. This is not possible in the case of the small residential PV system owner.
These systems, usually under &¥p in sizeare not equipped with the hardware or software to
enable accurate predictions and for the most part, irradiatitnaps are not availabldHowever,

some neighborhoods have become muitegawatt PV power stations, with many tens of aep

rate systems eacbonsistingof different combinations of invertersnodules, orientations, inclia-

tions and even functionality.

Unlikethe case of large commercial systems, a large neighborhood system aggregated of many
small systems is characterized by large variability of daily results when compared to the itheoret
cal results. This is mainly due to two reasons. First, small systenadfected by any change of
conditions, the difference betweeimdividuallocations is large and this yields a difference io-pr
duction. Second, the quality of maintenance is not the same for all systems. As a result of this
variability a theoretical modekhich fits all systems is not applicable. If one would likadbieve

daily prediction with high accuracy in spite of the aboeaditions a different approach must be
taken.

One of the possible approachesesMachine Learning TechnolodWILT). The ML a set of
YIEOGKSYFOGAOFE Tf3A2NAGKYAE SKAOK af SIENyaeg GKS NBf I
and tries to predict future outputs based on future inputs. It is important to note that the result of

GKS af SFENYAyYy3ITE LINBsOSTar@act systehThisishdSifd elttots calNelBt I G A 2
Y2RSt¢d | Y2RSE 2F I 508l3530SSRE dh y¢ KideaA a4 (0 | NEBST £ AS30 (oAl v
under which the inverter is working (e.g. ggaphiclocation, weathertilt, azimuth etc.). t also

reflects the specific hardware characteristics of each inverter. If for examplegmallyidenti-

cal inverters (i.e. produced by the same manufacturer at the same time) receive differenemaint

nance, the result should be reflected in the model.

As explained in Chapt&:.2, the MLTdescribed uses w& INBL&aaA 2y ¢NBESE oO6wecod ¢
the power or energy parameters from the inverter data logger aredeorological predicted data
available from public weather servers.

Since the system can accurately predict the NDH vyield, these algorithines appliedto the
KAAG2NAROIE RFEGE I OljdZANBR FTNRY (GKS alyYS mgSI GKSNJ 3
can ascertain if the system performed as it should have. If not, the system owner can be notified

to examine the system.
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3.1 System inputs

The only required input from the system owner is hourly energy or power parameters from the
inverter.

From an onlinaveather server near the PV systethe following parameters are collected from
G2RIFeQa K2dzNI & KA aQRody @ddictiorR:F GF FyR (12Y2NNRS

Temperature

Humidity

Barometric pressure

Wind speed

Dew point

Rain

Skyview (amount of sky covered by clouds)

T v T T T T

All variables are continuous variablesceptthe last ong which is a category variable thaed
scribes the sky state (clear, partial cloudy, cloudy, rain, fog etc.).

¢tKS aSNBAOS GKIG gl a dzaSR Ay GKS RS@St2LIVSyi
Weather Srvice (WWS). This a lesost service with ope\pplication Programming Interface

(AP) which gives easy accessrtal historical data and future weather prediction based on hourly
results.

FigurelO presents two mapsf WWS weather stations locatéd the north and the center of the
state of Israel.

FigurelO: Wundefroundweather stations.

The WWS is accessible usirmgy public APl as described in the WWS website (see
https://www.wunderground.com/weather/apiffor details). Output can be requested anvariety
of file formats such a€SV, JSON XML and can be easily processed by any .Net language.

3.2 Theoretical Background

Our firstattempts to formulate learning algorithmsaisedlocal linear regressiorhis did not sp-
ply satisfactory results, due to the mannierwhichsuch a method dealt with relatively extreme
changesuchasthoseexperienced during the change of seasdidhensaved in the learning data
base these value$urther confused the learning process.
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