THE RELEVANCE OF GRID-FORMING CONVERTERS AND HOW TO TEST THEM

Tech Talk and Digital Lab Tour

Soenke Rogalla, Rebekka Denninger, Roland Singer Fraunhofer Institute for Solar Energy Systems ISE

The Smarter E Industry Days online/Freiburg, 21.07.2021 www.ise.fraunhofer.de

Motivation

Why Do We Need Grid-Forming Converters?

Motivation Towards 100% Renewable Energy Generation

Energy-Charts Power > Energy > Emissions > Climate > Prices > Scenarios > Map Infos >

Energy-Charts Power > Energy > Emissions > Climate > Prices > Scenarios > Map Infos >

"Electronification" of the Power Grids

Estimated installed inverter capacity for generation and storage in the German power grid

Plant type	2020*	2030**	2050***	
Photovoltaics	54 GW	200 GW	415 GW	
Wind onshore	54.8 GW			
Wind offshore	7.7 GW	144 000	200 GW	
Large battery storage	0.5 GW	84 GW	170 GW	
Home storage	0.7 GW			
Electrolyzers	0.0 GW	5 GW	75 GW	
Total	106 GW	433 GW	970 GW	

Inverter capacities will increase <u>4x in the next 10 years /</u> <u>10x in the next 30 years</u>

Inverters are the technological backbone of the future energy grid!

*) Energy Charts - Installed net capacity for electricity generation in Germany in 2020; Transmission system operators' data on prequalified battery storage for primary control power; Derived from 2018 Annual Report on Storage Monitoring Program & 2019 Update; BSW fact sheet on the German solar power industry 2020;

**) Derived from the targets of the German government's Climate Protection Act 2021, National Hydrogen Strategy;

***) Fraunhofer ISE study "Pathways to a Climate Neutral Energy System"; 2020.

Replacement of Synchronous Generators by Inverters

Synchronous Generator:

- Inherent voltage source behavior
- Inertia for rotating masses
- High overload capability

Inverter:

- Freely programmable electrical behavior
- High dynamic controllable
- Hardy overloadable

System Split of the UCTE Grid on 08.01.2021, 14:05h **Frequency Reaction**

© Fraunhofer ISE

6

Sources: http://gridradar.net/, www.energy-charts.info,

https://www.entsoe.eu/news/2021/01/15/system-separation-in-the-continentaleurope-synchronous-area-on-8-january-2021-update)

Definition

What Are Grid-Forming Converters?

Control Types of Grid-Coupled Inverters

	Current Controlled		Voltage Controlled		
	Grid Following	Grid Supporting	Grid Leading	Grid Forming	
Type of Source	Constant current source	Controlled current source	Fixed voltages source	Controlled voltage source behind an impedance	
Application	Power feed-in	Power feed-in and provison ancillary grid services	Island grids with single voltage source	Interconnected systems with multiple sources	
		State of the art		Required for future grids	

Motivation What are grid forming inverters (GFC)?

GFC should enable stable grid operation without synchronous generators.

"<u>Grid Forming Converters</u> shall be capable of supporting the operation of the AC power system (from EHV to LV) under normal, disturbed and emergency states without having to rely on capabilities from Synchronous <u>Generators (SGs)</u>. This shall include the capabilities for stable operation for the extreme operating case of supplying the complete demand from <u>100%</u> converter based power sources. "1 [HPoPEIPS Report.]

Required feature of GFC according to HPoPEIPS report:

- Creating system voltage
- Contributing to fault level
- Sink for harmonics
- Sink for unbalance
- Contribution to inertia
- Preventing adverse control interactions

1Source.

© Fraunhofer ISE

g

ENTSO-E, "Technical Report: High Penetration of Power Electronic Interfaced Power Sources and the Potential Contribution of Grid forming Converters," Jan. 2020.

Conformity Assessment

How Can We Test Grid-Forming Convertes?

Testing Inverters at Fraunhofer ISE's Multi-MegawattLab Infrastructure: 110 kV/40 MVA Grid Connection

Testing Inverters at Fraunhofer ISE's Multi-MegawattLab Laboratory equipment

- High-precision, broadband power measurement
- PV generator simulator (up to 2,000 V / 1.4 MW)
- Bidirectional DC sources (up to 1,000 V / 600 A)
- Highly dynamic network simulator with P-HIL functionality (up to 1 MVA)
- Climatic chamber (-30 ... +80 °C)
- Mobile and stationary FRT test equipment (4.5 MVA / 10 MVA)
- R, L and C loads (1.2 MW / 7 MVAr)
- Anti-islanding test stand (400 kVA)

Multi-MegawattLab

Now Join Us On Our Virtual Lab Tour...

Properties of GFC to Be Tested

Behavior of GRID FORMING CONVERTER

Voltage source behavior	Voltage quality	Inertia	Overload and fault behavior	Active/Reactiv e power control	Grid interaction
 Stability of the voltage source Effective internal impedance 	 Sink for asym- metries Sink for harmonics 	 Inertia constant <i>H</i> Damping <i>D</i> 	 Voltage fault Phase fault Frequency fault (RoCoF) System split 	 Control accuracy Settling time Frequency control (e.g. LFSM-O/-U) Voltage control (e.g. Q(U)) 	• Impedance spectro- scopy

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Soenke Rogalla

www.ise.fraunhofer.de

Soenke.rogalla@ise.fraunhofer.de

15 © Fraunhofer ISE

