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Our Mission in Our Department Fuel Cell
Assisting Global Industry with Scientifically Sound Services

Understanding Fuel Cell Membrane Electrode
Assemblies (MEAs)

Key Performance Indicators 2024:
= 45 researchers plus students

= 9.2 Mio. € annual budget (w/o investments)

= 33% direct revenue by industry contract research

= > 500 m? |aboratory area with 13 single cell test
stations, 5 short stack test stations including
temperature chamber (all fully automated for 24/7
operation)

= Focus on transport application

© Fraunhofer ISE

2
—

©Fkr)?unhofer ISE ﬁ FraunhOfer

public

ISE


https://www.ise.fraunhofer.de/en/rd-infrastructure/center/center-for-fuel-cells-electrolysis-and-synthetic-fuel.html#cop96552011_414506800

Team Modeling

Electrode to System, Physics to Al

ionomer

water-free side-chain too short
filled pore pore for SO adsorption

Physics models
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1. Research Background
2. Data Generation

= Consistent Production

= Consistent Characterization
3. Model Training & Evaluation

4. Results & Disscussion

5. Conclusions
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Research Background
Motivation

= The catalyst layer plays a critical role in determining the cost and commercial viability of PEM fuel cells.

l, Data-Driven Optimization

CL composition -__Q__‘

© PtCratio | @
« I/Cratio O U
- et L2 Input Output i
P 000 > degradagion
MEA , ) S ) |
‘.. BoL

Characterization . <« S

* |-V curve - 8 E
oL

e e &

« ECSA J .

= Understand the intricate interplay between CCL ink composition, performance, and durability.
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Research Background
Uniqueness of Our Al

Data

Acquisition

Model
Selection
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Content

2. Data Generation
= Consistent Production
= Consistent Characterization
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Data Generation
Consistent Production

= Qur expertise in production guarantees consistent MEAs.

Catalyst Ink Production Flatbed Screen Printing Hot-Pressing

g

8 1] Ney et al., European Coating Symposium ECS 2021, Challenges of Fabricating Catalyst Layers for PEM Fuel Cells using Flatbed Screen Printing, 2021 —
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Data Generation
Ink Composition Design

' N [ N / )
Variations Group 1 [ Group 2 J Group 3
S AN ) - )
s N ) e N
Pt/C ratio 50% [20%}[30%}[40%}[50%}[60%} 50%
(. RN ) (. J
' N N ([ N [ )
/C ratio 0.5 J[ 0.8 J[ 1.2 0.8 1.2
(. RN AN 2N J
' N N [ N )
lonomer EW 790 790 720 }[ 790 }[ 830 }[ 980
- AN RN RN J
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Cathode Pt loading: 0.4 £ 0.05mg cm™?
Cathode carbon support: High surface carbon
lonomer: Short side chain ionomer

Membrane: GORE Membrane 18um thickness
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Data Generation
Consistent Characterization

= Comprehensive BoT and EoT characterization
= AST from DoE catalyst degradation protocol

= Fully automated testbench operation

2
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Step Nr.

Protocol

Estimated
test time [h]

=]

w

Breaklin

Galvanostatic Breakln, 2h @ 1.5 A/cm2

Recovery

Potentiostatic Breakln, 6h cycling between OCV, 0.6, 0.4V
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BoT Characterization

Recovery (Table P.9)

Limiting Current @ 4 pressures and 4 02 concentrations (16 total)

Recovery

Ul-Curves @ RH 100%

EIS H2/Air @ RH 100%

EIS H2/N2 @ RH 100%

Recovery

Ul-Curves @ RH 70%

EIS H2/Air @ RH 70%

EIS H2/N2 @ RH 70%

Recovery

Ul-Curves @ RH 40%

EIS H2/Air @ RH 40%

EIS H2/N2 @ RH 40%

Recovery

CV @ 100mV/s

LSV @ 1mV/s

25

Catalyst Aging (DoE protocol) -
Cycle Steps:
10,100, 1k, 3k, Sk, 10k, 20k, 30k

Degradation protocol: potential cycles 0.6- 0.95V (Table P.1)

CV @ 100mV/s

H2/N2 @ RH100%

Recovery

Ul-Curves @ RH 100% (only after 1k, 5k, 10k cycles)

71

0-16

EoT Characterization

same as BoT

25

130
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Data Generation

Characterization Design
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= Prioritizing the right features is crucial

= An algorithm was developed for data processing, which is essential for effective training

= 49 MEAs, 294 polarization curves (~6700 data points)
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3. Model Training & Evaluation
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Model Training & Evaluation
ANN: A Versatile Solution

Input: 7 Hidden QOutput: 4

0000
Production
(Pt/C, I/C, lonomer EW) ‘ ‘ ‘ ‘ ‘ ‘

Operating condition o
(RH, U) ‘E> © e e ':>

. ' | (BoT, EoT)

ASTcondmon‘ ‘ ‘ ‘ ‘ ‘
RH, UPL)
0000

= Pros: Multi-output, Nonlinear Approximation Power, Scalability

‘ ECSA (BoT, EoT)
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Model Training & Evaluation
Balanced Model

Input: 7 Hidldlen QOutput: 4

Q 00 Q
Production
(Pt/C, I/C, lonomer EW) ‘ ‘ ‘ ‘ ‘ ‘

Operating condition o
(RH, U) ‘E> © e e ':>

. ‘ | (BoT, EoT)

ASTcondmon‘ ‘ ‘ ‘ ‘ ‘
RH, UPL)
0000

= Pros: Multi-output, Nonlinear Approximation Power, Scalability

‘ ECSA (BoT, EoT)

= Model is finely tuned for effective learning without unnecessary complexity

14
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Model Training & Evaluation
Improved Generalization

Input: 7 7/ 14 8 Output: 4

Production .

(Pt/C, I/C, lonomer EW) . . .

Operating condition . Cgl . é ‘ ECSA (BoT, EoT)
(RH, U) :> 2 . 5 ‘ | (BoT, EoT)
a ol, Eo

AST condition . . .

(RH, UPL) ‘

= Pros: Multi-output, Nonlinear Approximation Power, Scalability
= Model is finely tuned for effective learning without unnecessary complexity

= “Dropout” and “L2 regularization” are added to improve generalization
15
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Model Training & Evaluation

Cross Validation

J

\

f
Optimization

Evaluation -

K-fold cross-validation is employed to further
ensure the NN model achieves robust
generalization performance.

Assisting in identifying the optimal NN architecture
Activation function: ReLU

Optimizer: adam

Loss function: Mean Squared Error

Accelerated by GPU computing

16
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Model Training & Evaluation
R-Squared Analysis

ANN predictions vs experimental data

3.0 3.0
Pt/C 40% 1/C 0.8 BoL O Pt/C 40% 1/C 0.8 EoL

O 100% RH = O 100% RH o
O 70% RH O 70%RH
A 40% RH A 40% RH

N
o
T
g
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n
o
T
o
o
T
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Current density from ANN (A cm?)
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0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

o
o
©
o

o
o

Current density from Exp. (A cm™) Current density from Exp. (A cm™)

= The model shows strong predictive capabilities, as evidenced by R-squared values of 0.9856 and 0.9774 for BoL
and EoL comparisons, respectively, which is valuable for lifespan optimization.
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Model Training & Evaluation

Learning Curve
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Epoch
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150

A steady decrease in training loss over time
indicates the model is successfully learning from
the data, refining its understanding of the
underlying patterns.

Validation loss trend implies the model is
generalizing well, not simply memorizing the
training data.

Stable convergence and a minimal gap between
training and validation loss confirm effective
learning and the absence of overfitting.
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4. Results & Discussion
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Results

BoT Performance Validation

1.0

0.8

o
o
T

Voltage (V)

0.448
04 |

0.2

BoL RH 70%

Exp
—1/C0.5
—1/C 0.8
—1/C 1.2
ANN
o 1/C05
O 1/C0.8
A 1/C1.2

0.0
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0.5

1.0 15 2.0 2.5
Current density (A cm™)

The predicted data points closely align with the
experimental curves, demonstrating the model’s
accuracy in capturing the performance behavior.

In 70 % RH, higher I/C ratios generally lead to
improved performance in the medium to high
voltage operating region due to a lower R

proton-

Below 0.448 V, the I/C 0.8 cell outperforms the I/C
1.2 cell. This is due to the increased likelihood of
flooding at high current density with increased
lonomer content, hindering mass transport.
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Results
BoT Performance Forecasting (Unseen Conditions)

Voltage (V)

21

o
(op}

0.3
0.2

0.1 ' .
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

4Tf

Operating RH increases

Current density (A cm™)

©Fraunhofer ISE

public

Predicted polarization curves adeptly capture the
operating behavior of the fuel cells.

The I/C 0.8 cell shows a better performance under
a higher RH due to the reduced R, Which
agrees with experimental findings.

As with increased humidity comes a greater risk of
flooding, the I/C 0.8 cell outperforms the I/C 1.2
cell from a higher voltage of 0.547 V. The ability to
predict performance under unseen humidity
conditions demonstrates the model’s robustness.
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Results
Optimizing ink composition

+0 RH 40% 0 PUC 1IC = By evaluating all Pt/C (20-60%) and I/C (0.5-1.2)
ratios, the model predicts an optimal composition

-o- 50 12
_ 2 50 0.8 (P/C 60%, I/C 1.2) that surpasses the best
0.8 A~ 60 08 experimental results (Pt/C 50%, I/C 1.2) at 40%

RH.
1.2

Voltage (V)
o
»

= A well-trained ML model significantly enhances
data analysis, reveals intricate patterns, and
efficiently guides users to optimal solutions, serving
as a critical asset for industrial applications.

0.4

0.2 : ! : ! : ! : ! : :
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5

Current density (A cm)

\
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Results
EoT Perfo

rmance Forecasting

Exp RH(%)

40 BoL

1,0
1/C 0.8; Pt/C 0.5
--- 40 EoL

0,8

Voltage (V)
o
(o))

o
~

— 100 BoL
- - - 100 EoL

ANN EoL
O 40
O 100

\ &

60% decline

| 1 | 1 | 1 | 1 |
2,5 3,0

0,2
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3,5

! :
1,5 2,0

00 05 10
Current density (A cm™)

ofer ISE

= ANN results closely match experimental data,
validating the model’s accuracy for EoT performance.

= Despite degradation, the cell performs well at
100% RH but loses 60% limiting current density at

40% RH. This suggests that internal Pt sites remain
active at high RH, while most external Pt particles

become non-functional, indicating most Pt loss

occurs externally.

\
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Results
EoT ECSA Forecasting

160

= ANN results closely match experimental data,
validating the model’s accuracy for EoT performance.

= Despite degradation, the cell performs well at
100% RH but loses 60% limiting current density at
40% RH. This suggests that internal Pt sites remain
active at high RH, while most external Pt particles
become non-functional, indicating most Pt loss
occurs externally.

=
S

ECSA loss (m* g™)

-
(\]
o

= Increasing the Pt/C ratio leads to lower ECSA loss,
and the data suggests more internal Pt under a
higher Pt/C ratio for this HSC material.

100

24
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Results

EoT Pe

rformance Optimization

1,0

Voltage (V)
o o
» (00}

o
~

Exp RH(%)
40 BoL
--- 40 EoL
—— 100 BoL
- - - 100 EoL
ANN EoL

O 40
O 100

I/C 0.8; Pt/C 0.5

\ & ]
60% decline

0,2

25

0,0 0,5 1,0 1,5 2,0 2,5 3,0

Current density (A cm™)
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3,5

= Based on these findings, it can be inferred that
the ink composition with a 0.6 Pt/C ratio is likely
to show a better EolL performance in high RH

condition.
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Results
EoT Performance Optimization

1.0 Exp RH(%) = Based on these findings, it can be inferred that
—— 40 BoL the ink composition with a 0.6 Pt/C ratio is likely
--- 40 EoL to show a better EolL performance in high RH

0.8 —— 100 BoL condition.

- - - 100 EoL
ANN EoL

S O 40 = The ANN prediction confirms a substantial

S 0.6 O 100 performance increase for Pt/C 0.6 under high RH,

= - %- 100 Pt/C 0.6 reducing performance decline by 75 %.

>

o
~

O 3 = These results highlight the model’s ability to
e decline reduced by 75%. provide valuable insights into degradation
60% decline mechanisms and material properties, supporting

o2 b— CL optimization.
00 05 10 15 20 25 30 35

Current density (A cm?)
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Results

Impact Analysis of Variables

0.20

Mean SHAP value (impact on output )
o o o o o o o o o o
o ©o o o © kB kB b B B
o N BN (o] (ee] o N ESN (o] (00]
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' ECSA BoL

| B ECSA Loss

|

Pt/C ratio

I/C ratio lonomer EWAST UPL ASTRH

= SHAP analysis helps to understand the impact of
each input factor on each output factor.

= The AST conditions play a major role in ECSA loss,
based on the present dataset, the model shows the
UPL exerts a more significant impact than RH.

= This allows to prioritize mitigation strategies for
minimizing degradation and to streamline the CL
development process.
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Conclusions

Our expertise in production and
characterization ensures high-qua

4

lity data.

="

Production
Characterization

Robust
development
support

The model's reliability may decrease with
out-of-range input data;

however, its capabilities will grow
powerfully as the dataset expands.

28
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Our expertise in modeling ensures effective learning.
Efficient prediction streamlines
production optimization, _ | “.._
making it a valuable £~

Exp Pt/C I/C
came Gy a7
-0-50 08
-4- 60 08
ANN

—%—60 12

>

industry tool.

Reliable
Prediction

02 L L L L L L
00 05 10 15 20 25 30 35
Current density (A cm?)

Deep insights
from data The model also shows a significant
advantage in data mining, offering
valuable insights into e
complex data patterns
that are difficult to

interpret intuitively.

[ ZZEcsA BoL
ECSA Loss

utput )
o o

Mean SHAP value (impact on o

= Fraunhofer

ISE



For more information about this work

Contents lists available at ScienceDirect

Energy and Al

I EI SEVIER journal homepage: www sciencedirect.com/journal/energy-and-ai

Perspective

Optimizing catalyst layer composition of PEM fuel cell via machine

- |_| N k -to -th | S WO rk learning: Insights from in-house experimental data

Yuze Hou ', Patrick Schneider, Linda Ney, Nada Zamel

Frauntofer Institute for Solar Energy Systems ISE, Freiburg Germany

https:/doi.org/10.1016/.egyai.2024.100439

o The AN model is designed to predict
the performance and durability of PEM

fuel cells. . P
e Data quality is ensured through precise Fecdback for design optimization
control of characterization and CL CL composition
. production. « PYC ratio
o The behavior patterns of PEM fuel ce « 1/C rati
[ ] he beh: f PEM fuel cells 1C ratio ® U —
are captured at both the beginning and * lonomer EW e 0 o degradngion\ | * BoL I
end of life.
B . s s . |:> T « EoLI
« The model can optimize GL ink compo- Characterization E> o i 2 + BoL ECSA
sition based on specific operating + Operating U AST . . . < BoL « FoLECSA
i . 1 1 1
conditions, = OperatingRH [ | | | | o 4] \[ L
. .  Valuable insights are derived through « ASTUPL o o] >
https://www.ise.fraunhofer.de/en/business- e Sl B
} . . . . ment process. t ARN
ARTICLE INFO ABSTRACT
Keywords: ‘The catalyst layer (CL) is a pivotal component of Proton Exchange Membrane (PEM) fuel cells, exerting a sig-
PEM fuel cdl nificant impact on both performance and durability. Its ink composition can be succinctly characterized by
Machine Learning platinum (PY) loading, Pt/carbon ratio, and ionomer/carbon ratio. The amount of each substance within the CL

Catalyst layer production

charactetization must be meticulously balanced to achieve optimal operation. In this work, we apply an Artificial Neural Network

(ANN) model to forecast the performance and durability of a PEM fuel cell based on its cathede CL composition.
‘The model is trained and validated based on experimental data measured at our laboratories, which consist of
data from 49 fuel cells, detailing their cathode CL composition, operating conditions, accelerated stress test
conditions, polarization curves and EGSA measurements throughout their lifespan, The presented ANN model
demonstrates exceptional reliability in predicting PEM fuel cell behavior for both beginning and end of life. This
allows for a deeper understanding of the influence of each input on performance and durability. Furthermore, the
model can be effectively applied to optimize the CL composition. This paper demonstrates the immense potential
of AL combined with a high-quality database, to advance fuel cell research.

1. Introduction pursuit of green energy [11. This is particularly critical for technologies
like Proten Exchange Membrane (PEM) fuel cells, where reducing costs
The design of energy materials has gained significant raction in the while maintaining high performance and durability is paramount [2].

* Gorresponding author.
E-mail address: yuze hou@ise.fraunhofer.de (Y. Hou).
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Following Webinar Topics

= Screen Printing of Catalyst Layers for PEM Fuel Cells
Linda Ney, Production
September 24, 2025

= Tolerance of Silicon Oxide Coated Pt/C Catalyst toward Contamination in the Hydrogen Feed
Dr. Sebastian Prass, Characterization
October 15, 2025

= In-Situ Characterization of Cathode Catalyst Degradation in PEM Fuel Cells
Patrick David Schneider, Characterization
November 19, 2025

= Modeling the Morphology of Porous Carbon Supports of PEMFC
Anne-Christine Scherzer, Modeling
December 10, 2025
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Workshop / June 30, 2025 - July 01, 2025

International Workshop on Fuel Cell MEA

Register now!

The International Workshop on Fuel Cell MEA will take place on June 30 and July 1,
2025. This event will be hosted both onsite at Fraunhofer ISE in Freiburg, Germany, and
online.

In our workshop we will focus on the interaction of ionomer with the catalyst in a fuel cell

REGISTRATION FORM [7
membrane electrode assembly (MEA) and its effects on performance and life-time. We will

concentrate on low temperature PEM fuel cells for mobile applications.

Why should you attend? Save the date! June 30 - July 01

= Gain Comprehensive Insights: Understand the effects of ionomer type and ionomer to
carbon ratio on fuel cell performance and fuel cell long-term operation.

Registration still open!

= Connect with Experts: Engage in meaningful discussions with leading experts from
industry and academia, including Prof. Jasna Jankovic (University of Connecticut), Prof.
Anna Fischer (University of Freiburg), Prof. Marian Chatenet (Grenoble Institute of
Technology) and Prof. Marc Secanell (Newcastle University).

= Explore Real-World Applications: Learn about successful use cases and current trends
in MEA architectures from an international perspective. ADD TO CALENDAR

= Discuss Challenges and Solutions: Share your design criteria for MEAs and collaborate
on strategies for your projects during panel discussions with experts.

= Experience Cutting-Edge Research: Join us for a lab tour at Fraunhofer ISE to see
state-of-the-art experimental setups.

31
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