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Our Mission in Our Department Fuel Cell

Understanding Fuel Cell Membrane Electrode 

Assemblies (MEAs)
—

Key Performance Indicators 2024:

▪ 45 researchers plus students

▪ 9.2 Mio. € annual budget (w/o investments) 

▪ 33% direct revenue by industry contract research

▪ > 500 m² laboratory area with 13 single cell test 

stations, 5 short stack test stations including 

temperature chamber (all fully automated for 24/7 

operation)

▪ Focus on transport application

Assisting Global Industry with Scientifically Sound Services
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In-situ Characterization Ex-situ Analytics

Modelling
Production 
Research

https://www.ise.fraunhofer.de/en/rd-infrastructure/center/center-for-fuel-cells-electrolysis-and-synthetic-fuel.html#cop96552011_414506800
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Team Modeling
Electrode to System, Physics to AI
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Electrode Single Cell System

Physics models AI
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1. Research Background

2. Data Generation

▪ Consistent Production

▪ Consistent Characterization

3. Model Training & Evaluation

4. Results & Disscussion

5. Conclusions
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Research Background 
Motivation
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MEA

▪ The catalyst layer plays a critical role in determining the cost and commercial viability of PEM fuel cells.

public

CL composition

• Pt/C ratio
• I/C ratio

• etc.

Ink
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• I-V curve
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Data-Driven Optimization

▪ Understand the intricate interplay between CCL ink composition, performance, and durability.
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Research Background 
Uniqueness of Our AI
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Data Generation
Consistent Production
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Glovebox 
System

Catalyst Ink Production Drying Hot-Pressing

In-Situ Characterization

Flatbed Screen Printing

[1] Ney et al., European Coating Symposium ECS 2021, Challenges of Fabricating Catalyst Layers for PEM Fuel Cells using Flatbed Screen Printing, 2021
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▪ Our expertise in production guarantees consistent MEAs.
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Variations

Pt/C ratio

I/C ratio

Ionomer EW

Data Generation
Ink Composition Design
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▪ Cathode Pt loading: 0.4 ± 0.05mg cm-2  

▪ Cathode carbon support: High surface carbon

▪ Ionomer: Short side chain ionomer

▪ Membrane: GORE Membrane 18µm thickness

Group 1

50%

0.5 0.8 1.2

790

Group 3

50%

1.2

720 790 830 980

Group 2

790

0.8

20% 30% 50% 60%40%
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Data Generation
Consistent Characterization
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▪ Comprehensive BoT and EoT characterization

▪ AST from DoE catalyst degradation protocol

▪ Fully automated testbench operation
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Data Generation
Characterization Design
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I/C ratio Pt/C ratio Ionomer EWVariations

Operating RH

AST potential 0.6~0.95 V 0.6~1.15 V 0.6~0.95 V 0.6~1.15 V0.6~0.95 V 0.6~1.15 V

40% 70% 100% 40% 70% 100% 40% 70% 100%

AST RH 40% 70% 100%

▪ Prioritizing the right features is crucial

▪ An algorithm was developed for data processing, which is essential for effective training

▪ 49 MEAs, 294 polarization curves (~6700 data points)

public



©Fraunhofer ISE

Content

12

1. Research Background

2. Data Generation

▪ Consistent Production

▪ Consistent Characterization

3. Model Training & Evaluation

4. Results

5. Conclusions

public



©Fraunhofer ISE

Model Training & Evaluation
ANN: A Versatile Solution
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Production
(Pt/C, I/C, Ionomer EW)

AST condition
(RH, UPL)

Operating condition
(RH, U)

ECSA (BoT, EoT)

I (BoT, EoT)

Input: 7 Output: 4Hidden

▪ Pros: Multi-output, Nonlinear Approximation Power, Scalability
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Model Training & Evaluation
Balanced Model
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Production
(Pt/C, I/C, Ionomer EW)

AST condition
(RH, UPL)

Operating condition
(RH, U)

ECSA (BoT, EoT)

I (BoT, EoT)

Input: 7 Output: 47   14                8Hidden
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▪ Model is finely tuned for effective learning without unnecessary complexity

▪ Pros: Multi-output, Nonlinear Approximation Power, Scalability
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Model Training & Evaluation
Improved Generalization
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▪ “Dropout” and “L2 regularization“ are added to improve generalization 
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Production
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▪ Model is finely tuned for effective learning without unnecessary complexity

▪ Pros: Multi-output, Nonlinear Approximation Power, Scalability
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Model Training & Evaluation
Cross Validation
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ALL Data

Training Test
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Evaluation

▪ K-fold cross-validation is employed to further 
ensure the NN model achieves robust 
generalization performance.

▪ Assisting in identifying the optimal NN architecture

▪ Activation function: ReLU
     Optimizer: adam
     Loss function: Mean Squared Error

▪ Accelerated by GPU computing
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Model Training & Evaluation
R-Squared Analysis
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▪ The model shows strong predictive capabilities, as evidenced by R-squared values of 0.9856 and 0.9774 for BoL 

and EoL comparisons, respectively, which is valuable for lifespan optimization.
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ANN predictions vs experimental data
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Model Training & Evaluation
Learning Curve
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▪ A steady decrease in training loss over time 
indicates the model is successfully learning from 
the data, refining its understanding of the 
underlying patterns.
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▪ Validation loss trend implies the model is 
generalizing well, not simply memorizing the 
training data.

▪ Stable convergence and a minimal gap between 
training and validation loss confirm effective 
learning and the absence of overfitting.
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▪ The predicted data points closely align with the 
experimental curves, demonstrating the model’s 
accuracy in capturing the performance behavior.

▪ In 70 % RH, higher I/C ratios generally lead to 
improved performance in the medium to high 
voltage operating region due to a lower Rproton. 

▪ Below 0.448 V, the I/C 0.8 cell outperforms the I/C 
1.2 cell. This is due to the increased likelihood of 
flooding at high current density with increased 
ionomer content, hindering mass transport.
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Results
BoT Performance Forecasting (Unseen Conditions) 
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▪ Predicted polarization curves adeptly capture the 
operating behavior of the fuel cells.

▪ The I/C 0.8 cell shows a better performance under 
a higher RH due to the reduced Rproton, which 
agrees with experimental findings.

▪ As with increased humidity comes a greater risk of 
flooding, the I/C 0.8 cell outperforms the I/C 1.2 
cell from a higher voltage of 0.547 V. The ability to 
predict performance under unseen humidity 
conditions demonstrates the model’s robustness.
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Results
Optimizing ink composition
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▪ By evaluating all Pt/C (20–60%) and I/C (0.5–1.2) 
ratios, the model predicts an optimal composition 
(Pt/C 60%, I/C 1.2) that surpasses the best 
experimental results (Pt/C 50%, I/C 1.2) at 40% 
RH.

▪ A well-trained ML model significantly enhances 
data analysis, reveals intricate patterns, and 
efficiently guides users to optimal solutions, serving 
as a critical asset for industrial applications.
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Results
EoT Performance Forecasting 
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▪ Despite degradation, the cell performs well at 
100% RH but loses 60% limiting current density at 
40% RH. This suggests that internal Pt sites remain 
active at high RH, while most external Pt particles 
become non-functional, indicating most Pt loss 
occurs externally.

▪ ANN results closely match experimental data, 
validating the model’s accuracy for EoT performance.
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Results
EoT ECSA Forecasting 
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▪ Increasing the Pt/C ratio leads to lower ECSA loss, 
and the data suggests more internal Pt under a 
higher Pt/C ratio for this HSC material. 
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▪ Despite degradation, the cell performs well at 
100% RH but loses 60% limiting current density at 
40% RH. This suggests that internal Pt sites remain 
active at high RH, while most external Pt particles 
become non-functional, indicating most Pt loss 
occurs externally.

▪ ANN results closely match experimental data, 
validating the model’s accuracy for EoT performance.
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Results
EoT Performance Optimization 
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▪ Based on these findings, it can be inferred that 
the ink composition with a 0.6 Pt/C ratio is likely 
to show a better EoL performance in high RH 
condition.
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▪ These results highlight the model’s ability to 
provide valuable insights into degradation 
mechanisms and material properties, supporting 
CL optimization.

Results
EoT Performance Optimization 
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▪ The ANN prediction confirms a substantial 
performance increase for Pt/C 0.6 under high RH, 
reducing performance decline by 75 %.
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▪ Based on these findings, it can be inferred that 
the ink composition with a 0.6 Pt/C ratio is likely 
to show a better EoL performance in high RH 
condition.
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Results
Impact Analysis of Variables
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▪ The AST conditions play a major role in ECSA loss, 
based on the present dataset, the model shows the 
UPL exerts a more significant impact than RH.

▪ SHAP analysis helps to understand the impact of 
each input factor on each output factor. 

▪ This allows to prioritize mitigation strategies for 
minimizing degradation and to streamline the CL 
development process. 
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Conclusions

Our expertise in production and 

characterization ensures high-quality data.

Production
Characterization

Reliable
Prediction

Robust 
development 

support

Deep insights 
from data

Our expertise in modeling ensures effective learning.

Efficient prediction streamlines 

production optimization, 
making it a valuable 

industry tool. 
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The model also shows a significant 

advantage in data mining, offering 
valuable insights into 

complex data patterns 

that are difficult to 
interpret intuitively.

The model's reliability may decrease with 

out-of-range input data; 
however, its capabilities will grow 

powerfully as the dataset expands.
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For more information about this work 
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https://doi.org/10.1016/j.egyai.2024.100439

▪ Link to this work 

https://www.ise.fraunhofer.de/en/business-
areas/hydrogen-technologies/fuel-cell.html

▪ Link to more recent works from our department

https://doi.org/10.1016/j.egyai.2024.100439
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Following Webinar Topics 

▪ Screen Printing of Catalyst Layers for PEM Fuel Cells

Linda Ney, Production

September 24, 2025

▪ Tolerance of Silicon Oxide Coated Pt/C Catalyst toward Contamination in the Hydrogen Feed

Dr. Sebastian Prass, Characterization

October 15, 2025

▪ In-Situ Characterization of Cathode Catalyst Degradation in PEM Fuel Cells

Patrick David Schneider, Characterization

November 19, 2025

▪ Modeling the Morphology of Porous Carbon Supports of PEMFC

Anne-Christine Scherzer, Modeling

December 10, 2025
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June 30 – July 01

Registration still open!



Thank You 

for Your Attention! Q & A
—
Dr. Yuze Hou

yuze.hou@ise.fraunhofer.de

Feedback questionnaire
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