

Optimizing Catalyst Layer Composition of PEMFC via Machine Learning: Insights from In-House Experimental Data

Speaker: Yuze Hou Co-authors: Patrick Schneider, Linda Ney, Nada Zamel Fraunhofer ISE Fuel Cell Scientific Insights Webinar Freiburg Germany; 25.06.2025 www.ise.fraunhofer.de

Our Mission in Our Department Fuel Cell

Assisting Global Industry with Scientifically Sound Services

Understanding Fuel Cell Membrane Electrode Assemblies (MEAs)

Key Performance Indicators 2024:

- 45 researchers plus students
- 9.2 Mio. € annual budget (w/o investments)
- 33% direct revenue by industry contract research
- > 500 m² laboratory area with 13 single cell test stations, 5 short stack test stations including temperature chamber (all fully automated for 24/7 operation) Enjoy our virtual lab tour
- Focus on transport application

©Fraunhofer ISE public

2

Team Modeling

Electrode to System, Physics to AI

©Fraunhofer ISE public

Content

1. Research Background

2. Data Generation

- Consistent Production
- Consistent Characterization
- 3. Model Training & Evaluation
- 4. Results & Disscussion
- 5. Conclusions

©Fraunhofer ISE public

Research Background

Motivation

• The catalyst layer plays a critical role in determining the cost and commercial viability of PEM fuel cells.

• Understand the intricate interplay between CCL ink composition, performance, and durability.

Research Background

Uniqueness of Our AI

©Fraunhofer ISE public

6

Content

1. Research Background

2. Data Generation

- Consistent Production
- Consistent Characterization
- 3. Model Training & Evaluation
- 4. Results & Disscussion
- 5. Conclusions

©Fraunhofer ISE public

Consistent Production

• Our expertise in production guarantees consistent MEAs.

8 [1] Ney et al., European Coating Symposium ECS 2021, Challenges of Fabricating Catalyst Layers for PEM Fuel Cells using Flatbed Screen Printing, 2021

©Fraunhofer ISE public

Data Generation

Ink Composition Design

- Cathode Pt loading: 0.4 ± 0.05 mg cm⁻²
- Cathode carbon support: High surface carbon
- Ionomer: Short side chain ionomer
- Membrane: GORE Membrane 18µm thickness

Data Generation

Consistent Characterization

- Comprehensive BoT and EoT characterization
- AST from DoE catalyst degradation protocol
- Fully automated testbench operation

Step Nr.		Protocol		Estimated
1			Galvanostatic BreakIn, 2h @ 1.5 A/cm2	test time [n]
2		BreakIn	Becovery	9
3			Potentiostatic BreakIn, 6h cycling between OCV, 0.6, 0.4 V	
	0	0 1 2 3 4 5 6 7 8 BoT Characterization	Recovery (Table P.9)	25
	1		Limiting Current @ 4 pressures and 4 O2 concentrations (16 total)	
	2		Recovery	
	3		UI-Curves @ RH 100%	
	4		EIS H2/Air @ RH 100%	
	5		EIS H2/N2 @ RH 100%	
	6		Recovery	
	7		UI-Curves @ RH 70%	
4	8		EIS H2/Air @ RH 70%	
	9		EIS H2/N2 @ RH 70%]
	10		Recovery	-
	11		UI-Curves @ RH 40%	
	12		EIS H2/Air @ RH 40%	
	13		EIS H2/N2 @ RH 40%	
	14		Recovery	
	15		CV @ 100mV/s	
	16		LSV @ 1mV/s	
			Degradation protocol: potential cycles 0.6 - 0.95 V (Table P.1)	
		Catalyst Aging (DoE protocol) -	CV @ 100mV/s	
5		Cycle Steps:	H2/N2 @ RH100%	71
		10,100,1k,3k,5k,10k,20k,30k	Recovery	-
			UI-Curves @ RH 100% (only after 1k, 5k,10k cycles)	
6	0-16	EoT Characterization	same as BoT	25
				<u>130</u>

Data Generation

Characterization Design

- Prioritizing the right features is crucial
- An algorithm was developed for data processing, which is essential for effective training
- 49 MEAs, 294 polarization curves (~6700 data points)

Content

1. Research Background

2. Data Generation

- Consistent Production
- Consistent Characterization
- 3. Model Training & Evaluation

4. Results

5. Conclusions

©Fraunhofer ISE public

ANN: A Versatile Solution

13

Balanced Model

Model is finely tuned for effective learning without unnecessary complexity

Improved Generalization

- Pros: Multi-output, Nonlinear Approximation Power, Scalability
- Model is finely tuned for effective learning without unnecessary complexity
- "Dropout" and "L2 regularization" are added to improve generalization

15

Cross Validation

- K-fold cross-validation is employed to further ensure the NN model achieves robust generalization performance.
- Assisting in identifying the optimal NN architecture
- Activation function: ReLU Optimizer: adam Loss function: Mean Squared Error
- Accelerated by GPU computing

R-Squared Analysis

 The model shows strong predictive capabilities, as evidenced by R-squared values of 0.9856 and 0.9774 for BoL and EoL comparisons, respectively, which is valuable for lifespan optimization.

Learning Curve

- A steady decrease in training loss over time indicates the model is successfully learning from the data, refining its understanding of the underlying patterns.
- Validation loss trend implies the model is generalizing well, not simply memorizing the training data.
- Stable convergence and a minimal gap between training and validation loss confirm effective learning and the absence of overfitting.

Content

1. Research Background

2. Data Generation

- Consistent Production
- Consistent Characterization
- 3. Model Training & Evaluation

4. Results & Discussion

5. Conclusions

©Fraunhofer ISE public

Results BoT Performance Validation

- The predicted data points closely align with the experimental curves, demonstrating the model's accuracy in capturing the performance behavior.
- In 70 % RH, higher I/C ratios generally lead to improved performance in the medium to high voltage operating region due to a lower R_{proton}.
- Below 0.448 V, the I/C 0.8 cell outperforms the I/C 1.2 cell. This is due to the increased likelihood of flooding at high current density with increased ionomer content, hindering mass transport.

Results

BoT Performance Forecasting (Unseen Conditions)

- Predicted polarization curves adeptly capture the operating behavior of the fuel cells.
- The I/C 0.8 cell shows a better performance under a higher RH due to the reduced R_{proton}, which agrees with experimental findings.
- As with increased humidity comes a greater risk of flooding, the I/C 0.8 cell outperforms the I/C 1.2 cell from a higher voltage of 0.547 V. The ability to predict performance under unseen humidity conditions demonstrates the model's robustness.

Results Optimizing ink composition

By evaluating all Pt/C (20–60%) and I/C (0.5–1.2) ratios, the model predicts an optimal composition (Pt/C 60%, I/C 1.2) that surpasses the best experimental results (Pt/C 50%, I/C 1.2) at 40% RH.

 A well-trained ML model significantly enhances data analysis, reveals intricate patterns, and efficiently guides users to optimal solutions, serving as a critical asset for industrial applications.

Results EoT Performance Forecasting

- ANN results closely match experimental data, validating the model's accuracy for EoT performance.
- Despite degradation, the cell performs well at 100% RH but loses 60% limiting current density at 40% RH. This suggests that internal Pt sites remain active at high RH, while most external Pt particles become non-functional, indicating most Pt loss occurs externally.

Results EoT ECSA Forecasting

- ANN results closely match experimental data, validating the model's accuracy for EoT performance.
- Despite degradation, the cell performs well at 100% RH but loses 60% limiting current density at 40% RH. This suggests that internal Pt sites remain active at high RH, while most external Pt particles become non-functional, indicating most Pt loss occurs externally.
- Increasing the Pt/C ratio leads to lower ECSA loss, and the data suggests more internal Pt under a higher Pt/C ratio for this HSC material.

@Erouph

Results EoT Performance Optimization

 Based on these findings, it can be inferred that the ink composition with a 0.6 Pt/C ratio is likely to show a better EoL performance in high RH condition.

Results EoT Performance Optimization

- Based on these findings, it can be inferred that the ink composition with a 0.6 Pt/C ratio is likely to show a better EoL performance in high RH condition.
- The ANN prediction confirms a substantial performance increase for Pt/C 0.6 under high RH, reducing performance decline by 75 %.
- These results highlight the model's ability to provide valuable insights into degradation mechanisms and material properties, supporting CL optimization.

Results

Impact Analysis of Variables

 SHAP analysis helps to understand the impact of each input factor on each output factor.

- The AST conditions play a major role in ECSA loss, based on the present dataset, the model shows the UPL exerts a more significant impact than RH.
- This allows to prioritize mitigation strategies for minimizing degradation and to streamline the CL development process.

Conclusions

28

For more information about this work

Link to this work

https://doi.org/10.1016/j.egyai.2024.100439

Link to more recent works from our department

https://www.ise.fraunhofer.de/en/businessareas/hydrogen-technologies/fuel-cell.html

Contents lists available at ScienceDirect Energy and AI journal homepage: www.sciencedirect.com/journal/energy-and-ai Perspective Optimizing catalyst layer composition of PEM fuel cell via machine learning: Insights from in-house experimental data Yuze Hou^{*}, Patrick Schneider, Linda Ney, Nada Zamel Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany HIGHLIGHTS GRAPHICAL ABSTRACT • The ANN model is designed to predict the performance and durability of PEM fuel cells. Feedback for design optimization • Data quality is ensured through precise control of characterization and CL CL composition production. Pt/C ratio • The behavior patterns of PEM fuel cells I/C ratio are captured at both the beginning and Ionomer EW end of life. • The model can optimize CL ink compo-Characterization AST sition based on specific operating · Operating U conditions. Operating RH · Valuable insights are derived through AST UPL 14 data mining, accelerating the develop- AST RH ANN ment process ARTICLE INFO ABSTRACT Keywords: PEM fuel cell Machine Learning

Energy and AI 18 (2024) 100439

The catalyst layer (CL) is a pivotal component of Proton Exchange Membrane (PEM) fuel cells, exerting a significant impact on both performance and durability. Its ink composition can be succinctly characterized by platinum (Pt) loading, Pt/carbon ratio, and ionomer/carbon ratio. The amount of each substance within the CL must be meticulously balanced to achieve optimal operation. In this work, we apply an Artificial Neural Network (ANN) model to forecast the performance and durability of a PEM fuel cell based on its cathode CL composition. The model is trained and validated based on experimental data measured at our laboratories, which consist of data from 49 fuel cells, detailing their cathode CL composition, operating conditions, accelerated stress test conditions, polarization curves and ECSA measurements throughout their lifespan. The presented ANN model demonstrates exceptional reliability in predicting PEM fuel cell behavior for both beginning and end of life. This allows for a deeper understanding of the influence of each input on performance and durability. Furthermore, the model can be effectively applied to optimize the CL composition. This paper demonstrates the immense potential of AI, combined with a high-quality database, to advance fuel cell research. pursuit of green energy [1]. This is particularly critical for technologies like Proton Exchange Membrane (PEM) fuel cells, where reducing costs while maintaining high performance and durability is paramount [2]. The design of energy materials has gained significant traction in the

ENERGY

BoL I

EoL I

BoL ECSA

EoL ECSA

* Corresponding author. E-mail address: yuze.hou@ise.fraunhofer.de (Y. Hou).

Catalyst layer production

Characterization

1. Introduction

©Fraunhofer ISE public

29

Following Webinar Topics

- Screen Printing of Catalyst Layers for PEM Fuel Cells Linda Ney, Production September 24, 2025
- Tolerance of Silicon Oxide Coated Pt/C Catalyst toward Contamination in the Hydrogen Feed Dr. Sebastian Prass, Characterization October 15, 2025
- In-Situ Characterization of Cathode Catalyst Degradation in PEM Fuel Cells Patrick David Schneider, Characterization November 19, 2025
- Modeling the Morphology of Porous Carbon Supports of PEMFC Anne-Christine Scherzer, Modeling December 10, 2025

Workshop / June 30, 2025 - July 01, 2025 International Workshop on Fuel Cell MEA

The International Workshop on Fuel Cell MEA will take place on June 30 and July 1, 2025. This event will be hosted both onsite at Fraunhofer ISE in Freiburg, Germany, and online.

In our workshop we will focus on the interaction of ionomer with the catalyst in a fuel cell membrane electrode assembly (MEA) and its effects on performance and life-time. We will concentrate on low temperature PEM fuel cells for mobile applications.

Why should you attend?

- Gain Comprehensive Insights: Understand the effects of ionomer type and ionomer to carbon ratio on fuel cell performance and fuel cell long-term operation.
- Connect with Experts: Engage in meaningful discussions with leading experts from industry and academia, including Prof. Jasna Jankovic (University of Connecticut), Prof. Anna Fischer (University of Freiburg), Prof. Marian Chatenet (Grenoble Institute of Technology) and Prof. Marc Secanell (Newcastle University).
- Explore Real-World Applications: Learn about successful use cases and current trends in MEA architectures from an international perspective.
- Discuss Challenges and Solutions: Share your design criteria for MEAs and collaborate on strategies for your projects during panel discussions with experts.
- Experience Cutting-Edge Research: Join us for a lab tour at Fraunhofer ISE to see state-of-the-art experimental setups.

Register now!

REGISTRATION FORM

Save the date!

June 30 – July 01

Registration still open!

ADD TO CALENDAR

Dr. Yuze Hou yuze.hou@ise.fraunhofer.de

Feedback questionnaire