

Inhalt

Zielstellung und methodischer Ansatz

2 Ausgewählte Ergebnisse des Elektrifizierungsszenarios

3 Zusammenfassung und Ausblick

Inhalt

Zielstellung und methodischer Ansatz

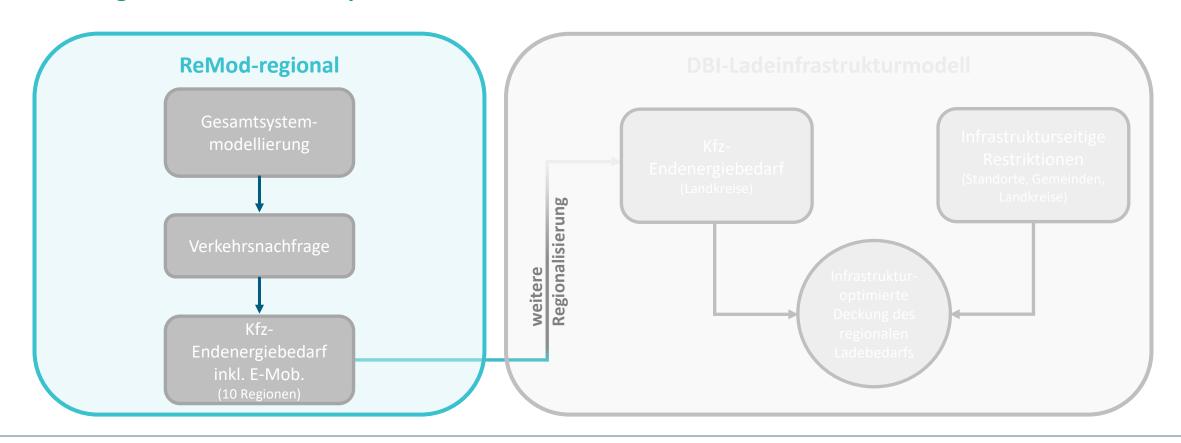
2 Ausgewählte Ergebnisse des Elektrifizierungsszenarios

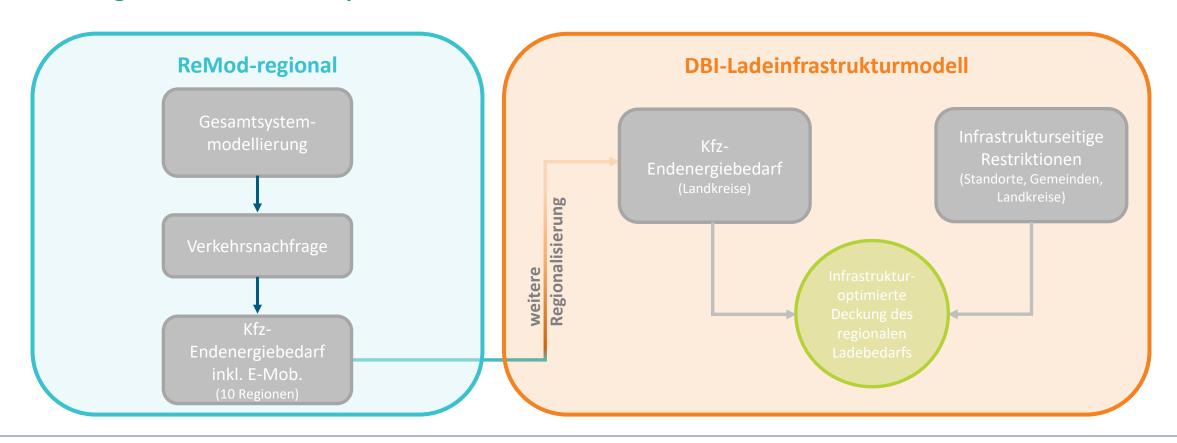
3 Zusammenfassung und Ausblick

Zielstellung:

Entwicklung eines Modells zur regionalen Verortung von Ladesäulen

Teilaufgaben:


- ✓ nahtlose **Einbindung in das Energie-Modelle-System** von TransDE
- ✓ Berücksichtigung aller gemäß Literatur relevanten Lade Use Cases (privat, öffentlich)
- ✓ zu erzielendes Modellergebnis: Anzahl und installierte elektrische Leistung je Use Case bis 2045
- ✓ regionale Auflösung der Modellergebnisse: mind. Landkreisebene


Einbindung in das Modellkonzept von TransDE

Einbindung in das Modellkonzept von TransDE

Vorüberlegungen

- In Abhängigkeit des zu untersuchenden Lade Use Cases ist eine Vielzahl (regionalisierter) Rohdaten zu erheben.
- Die geeignete Verschneidung der Inputdaten ist Aufgabe des Ladeinfrastrukturmodells.
- Die eingesetzten Daten besitzen abweichende regionale Auflösungen:
 - Standortscharf: z.B. bestehende Ladesäulen,
 - administrative Gliederungen (Landkreise, Gemeinden): z.B. Einkommensniveau,
 - individuelle Flächen: z.B. freie Bauflächen für Schnelllade-Hubs.



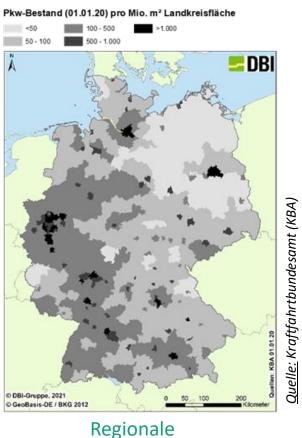
Annahmen

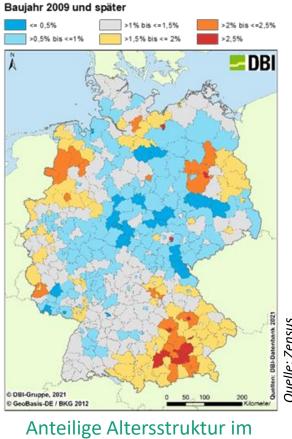
- Wohnort/Arbeitgeber werden regelmäßig und planbar angefahren.
- Zudem vergleichsweise lange Standzeiten der Fahrzeuge je privatem Use Case.
- ➤ Grundidee: Modell bevorzugt privates Laden vor öffentlichem Laden.

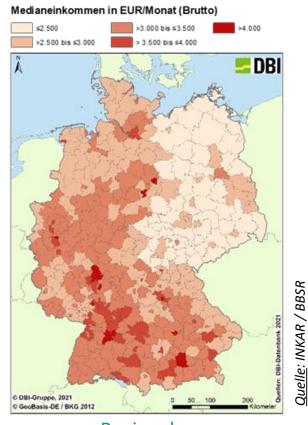
Lade Use Cases in der Literatur

Quelle: Ladeinfrastruktur nach 2025/2030: Szenarien für den Markthochlauf, Nat. Leitstelle LIS, Berlin 2020

Lade Use Cases im Modell


Privates Laden	Öffentliches Laden
 am Wohnort beim Arbeitgeber 	 HPC-Hubs (innerorts) HPC-Hubs (Fernverkehrsachsen) Kundenparkplätze Straßenraum




Genutzte Inputdaten am Beispiel des privaten Ladens am Wohnort (Auswahl)

Pkw-Bestände

Gebäudebestand

Regionales Einkommensniveau

Modelloutput

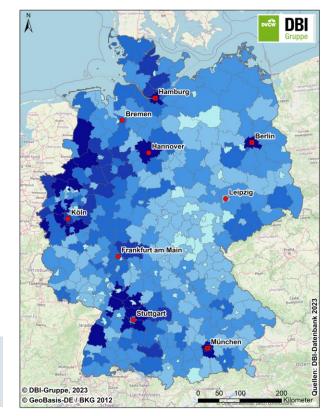
- Das Modellergebnis wird je Stützjahr (2020, 2030, 2040, 2045) und Landkreis ausgewiesen
- Output 1: Anzahl und regionale Verteilung der Ladesäulen je Use Case
- Output 2: installierte elektrische Leistung (in MW) je Use Case
- Output 3: verladene elektrische Arbeit (in MWh/a) je Use Case

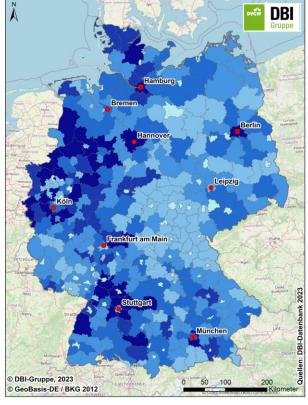
Inhalt

Zielstellung und methodischer Ansatz

Ausgewählte Ergebnisse des Elektrifizierungsszenarios

Zusammenfassung und Ausblick


übertragene elektrische Arbeit in GWh/a

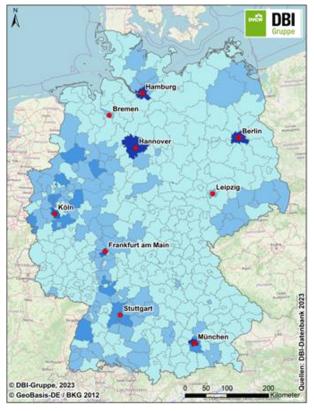


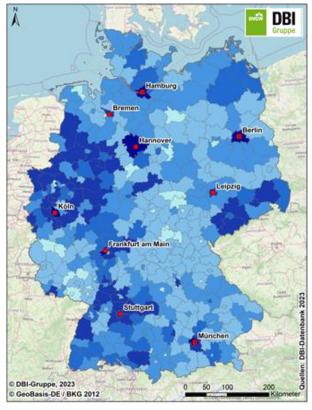
1. Laden am Wohnort

- In 2030 werden ca. 30 % der W_{el} an EFH bzw.
 MFH verladen
- Klare Korrelation zwischen Bevölkerungsdichte und W_{el}
- Ballungsräume besonders gefordert

→ Moderater Anstieg der übertragenen elektrischen Energie um ≈ 12% (2045/2030).

2030 2045

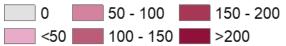

2. Laden am Arbeitsplatz

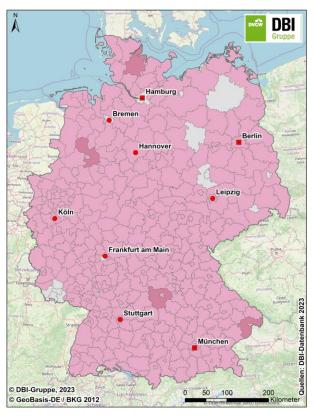

- In 2030 zunächst vorwiegend
 - Großstädte, bevölkerungsreiche Landkreise
 - spiegelt höheren Anteil von Konzernen wider
- Anteil des AG-Ladens an Gesamtenergie
 - **2030 = 37 %**
 - 2045 = 45 % (\triangleq 53 TWh/a)

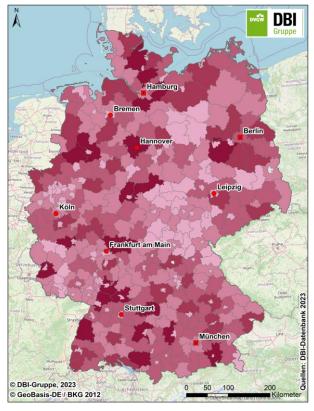
→ Arbeitgeber-Laden kann eine wesentliche Stütze für Akzeptanz/Verbreitung der E-Mobilität darst.

übertragene elektrische Arbeit in GWh/a

2030 2045


3. Laden an HPC¹-Hubs (innerorts)

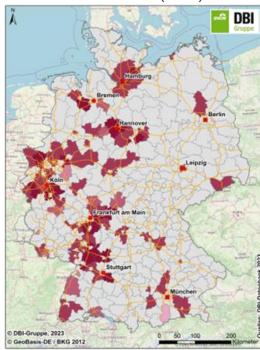

- Innerorts gelegene HPC-Hubs bilden sinnvolle Ergänzung für privates Laden
 - breiter Nutzerkreis
 - hohe Leistung (150 kW) → vglw. geringe Ladezeiten
- Geringere Bedeutung in Thüringen und Teilen Sachsen-Anhalts (2045)
- Peak in 2045 mit 30 % Anteil bzw. 35 TWh/a


¹ High Performance Charging

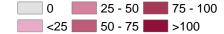
→ In nahezu jedem Landkreis werden bis 2030 erste Hubs innerorts errichtet.

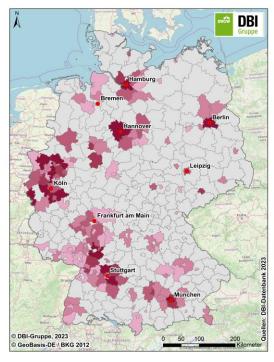
übertragene elektrische Arbeit in GWh/a

2030 2045

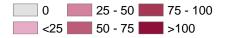


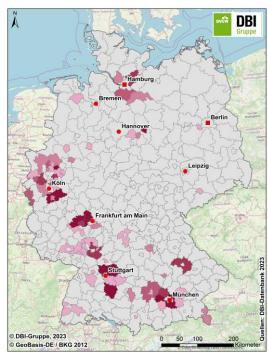
4. Sonstige Use Cases




<5 10 - 20 >50 Bundesautobahn (OSM)

HPC an Achsen 2045 = 3.2 TWh/a

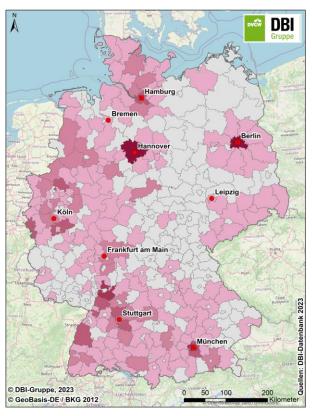

übertragene elektrische Arbeit in GWh/a

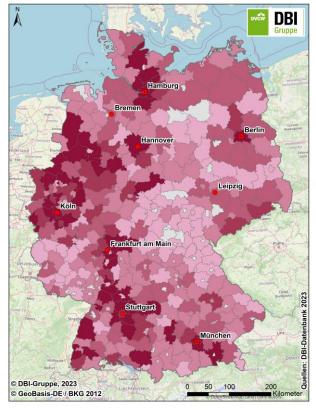


an Kundenparkplätzen 2045 = 7,6 TWh/a

übertragene elektrische Arbeit in GWh/a

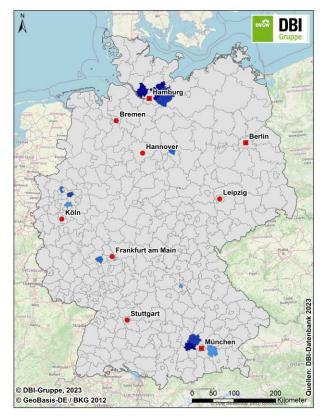
im Straßenraum 2045 = 3,5 TWh/a


5. Ladebedarf gesamt


- Überlagerung der Ladebedarfe aus den einzelnen Use Cases
- 2030: Fokus auf urbanen Agglomerationen (Westen, Süden, Berlin + Umland) und Sachsen
- 2045: stärkere Verteilung des Ladebedarfs in der Fläche

→ In 2045 weisen 46 Landkreise einen Gesamtladebedarf >500 GWh/a auf.

2030 2045

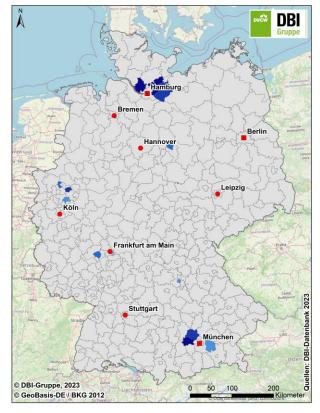

Engpässe Ladeinfrastruktur

"kritische Landkreise" (Bedarf > Ladekapazität)

- In 2030 wird der Bedarf in 13 Landkreisen nicht gedeckt
- Summe Fehlmenge: 211 GWh/a
- Top 3 nach Fehlmenge absteigend
 - Stormarn (Schleswig Holstein)
 - Fürstenfeldbruck (Bayern)
 - Pinneberg (Schleswig Holstein)
- → Infrastrukturaufbau kann weit überwiegend mit dem Bedarfszuwachs Schritt halten.

Fehlmenge Ladebedarf ("Ladelücke") in GWh/a

2030


Engpässe Ladeinfrastruktur

Ursachen für unzureichende Ladeinfrastruktur

- Hoher Anteil an Wohngebäuden ohne LIS infolge
 - hohes Gebäudealter
 - geringes Einkommensniveau
- Ländliche Prägung
 - keine/geringe Verfügbarkeit von Arbeitgeber-Stellplätzen
 - keine/geringe Anzahl an Einkaufszentren
- Keine freien Bauflächen für HPC-Hubs
- Unzureichende Verkehrsinfrastruktur (Straßen/Autobahnen)
- Bilanzgrenze des Modells = Landkreise

Fehlmenge Ladebedarf ("Ladelücke") in GWh/a

2030

Inhalt

1

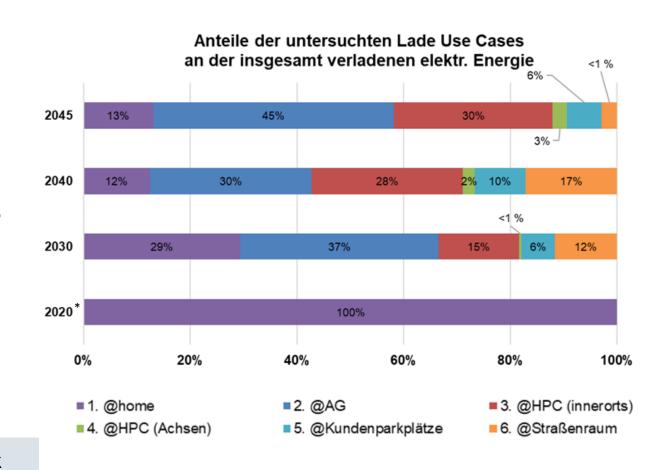
Zielstellung und methodischer Ansatz

2

Ausgewählte Ergebnisse des Elektrifizierungsszenarios

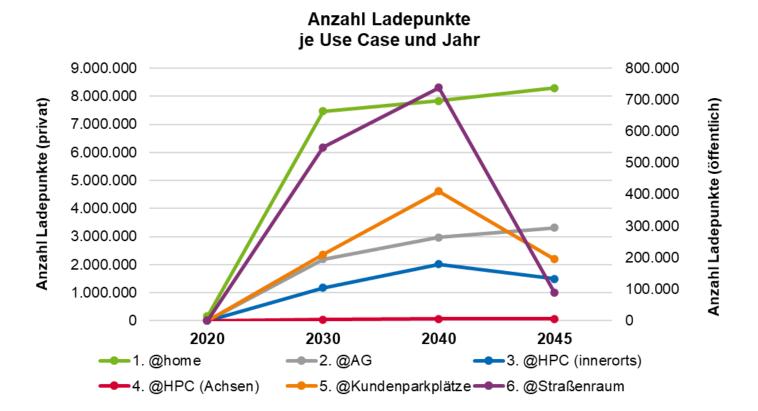
3

Zusammenfassung und Ausblick



Zusammenfassung

- Ab 2030 bildet das **Laden beim** Arbeitgeber die Hauptsäule beim Lademix je Stützjahr
- Bedeutung von **HPC-Hubs** steigt kontinuierlich bis 2045 (auf bis zu 30 % Anteil) an
- 2045 besitzt **privates Laden** einen Anteil von 58 % (energieseitig)
- Laden im **Straßenraum** nachrangig
- → Wechselwirkungen zwischen Use Cases: hohe Dynamik beim Aufbau/Rückbau von Ladeinfrastruktur.


*aufgrund des TransDE-Projektstarts in 2019 wurde 2020 als Startjahr definiert

Zusammenfassung

→ Erfolgreicher Hochlauf privater Ladeinfrastruktur vermindert Druck auf öffentliches Laden.

Zusammenfassung bisheriger Erkenntnisse

- 1. Private Lade Use Cases von herausragender Bedeutung
- 2. Gezielte Ergänzung um stringent platzierte HPC-Hubs erforderlich
- 3. In Abhängigkeit vom Use Case **kein klassischer "Hochlauf"**: kein stetig wachsender Bestand an Ladesäulen bei allen Use Cases, auch Rückbau ist möglich (nötig)
- 4. Weitreichende **Anstrengungen bereits bis 2030** erforderlich
 - a) Rechtliche Rahmenbedingungen
 - b) Förderinstrumente
 - c) Kontinuierlicher Dialog zwischen allen relevanten Stakeholdern (Industrie, Kommunen, Ladesäulenbetreiber)
 - d) Ertüchtigung/Ausbau der Stromnetze

Ausblick

- Bisherige Modellergebnisse stark abhängig von starrer Vorgabe der Rangfolge für Ladetypen
- Potenzielle Modellanpassungen/Modellerweiterungen
 - Optimierungsfunktion statt Vorgaben: Rangfolge der Use Cases dynamisch ermitteln, sodass Gesamtkosten der Ladeinfrastruktur minimiert werden
 - Erhöhung der regionalen Auflösung für alle Use Cases: standortscharf (Idealfall)
 - Rückkopplung mit einem Stromnetzmodell zur Vermeidung von Netzengpässen
- Ergebnisverwendung
 - **FuE-Kontext:** Modellverbesserung (s.o.) in etwaigen Folgeprojekten
 - Industriekontext: Teile des Tools werden durch DBI bereits als Industriedienstleistung angeboten

Vielen Dank für Ihre Aufmerksamkeit

Kontakt

Nico Steyer, M. Sc.
Projektleiter GIS- u. Potenzialanalysen (Fachgebiet Energieversorgungssysteme)
Tel. +49 3731 4195-336
nico.steyer@dbi-gruppe.de

DBI Gas- und Umwelttechnik GmbH Karl-Heine-Straße 109/111 04229 Leipzig www.dbi-gruppe.de