Aktuelle Fakten zur Photovoltaik in Deutschland

Aktuelle Fassung abrufbar unter www.pv-fakten.de

Zusammengestellt von
Dr. Harry Wirth
Bereichsleiter Photovoltaik
Module und Kraftwerke
Fraunhofer ISE

Kontakt:
Karin Schneider
Presse und Public Relations
Telefon: +49 (0) 7 61 / 45 88-51 47
Fax: +49 (0) 7 61 / 45 88-91 47
Fraunhofer-Institut für Solare Energiesysteme ISE
Heidenhofstraße 2
79110 Freiburg
info@ise.fraunhofer.de

Zitierhinweis: Aktuelle Fakten zur Photovoltaik in Deutschland, Fraunhofer ISE, Download von www.pv-fakten.de, Fassung vom 29.5.2019
Inhalt

1. **Wozu dieser Leitfaden?** ... 5
2. **Erreichen wir unser jährliches Zubauziel?** .. 5
3. **Liefert PV relevante Beiträge zur Stromversorgung?** 5
4. **Ist PV-Strom zu teuer?** .. 6
 4.1 Stromgestehungskosten .. 7
 4.2 Einspeisevergütung ... 9
 4.3 Preisbildung an der Strombörse und der Merit Order Effekt 11
 4.4 Ermittlung der Differenzkosten ... 13
 4.5 Privilegierte Verbraucher ... 14
 4.6 EEG-Umlage .. 15
5. **Subventionen und Strompreise** .. 18
 5.1 Wird PV-Strom subventioniert? ... 18
 5.2 Wird die fossile und nukleare Stromerzeugung subventioniert? 19
 5.3 Subventionieren Mieter gut situierte Hauseigentümer? 20
 5.4 Verteuert PV-Stromerzeugung den Strom für Privathaushalte? 20
 5.5 Verteuert PV den Strom für die Industrie? ... 22
6. **Exportieren wir massiv PV-Strom ins europäische Ausland?** 23
7. **Kann eine neue PV-Anlage gute Renditen bringen?** 24
8. **Erzeugt die PV-Branche nur Arbeitsplätze in Asien?** 25
9. **Zeigen große deutsche Energieversorger Interesse an PV?** 27
10. **Welche Fördermittel gehen in die PV-Forschung?** 30
11. **Überlastet PV-Strom unser Energiesystem?** .. 31
 11.1 Übertragung und Verteilung .. 31
 11.2 Volatilität .. 33
 11.2.1 Solarstrom-Produktion ist planbar .. 33
 11.2.2 Spitzenproduktion deutlich kleiner als installierte PV-Leistung 33
 11.2.3 Sonnen- und Windstrom ergänzen sich .. 34
 11.3 Regelbarkeit .. 35
 11.4 Konflikte mit trägen fossilen und nuklearen Kraftwerken 36
11.5 Gefährdet volatile Solarstrom die Versorgungssicherheit?38
11.6 Muss der PV-Ausbau auf Speicher warten? ...38
12. Verschlingt die Produktion von PV-Modulen mehr Energie als diese im Betrieb liefern können? ...39
13. Gibt es in Deutschland genügend Flächen für PV?39
14. Finden PV-Kraftwerke Akzeptanz in der Bevölkerung?40
15. Arbeiten PV-Anlagen in Deutschland effizient?41
15.1 Degradieren PV-Anlagen? ...42
15.2 Verschmutzen PV-Module? ...43
15.3 Arbeiten PV-Anlagen selten unter Volllast? ..43
16. Liefert PV relevante Beiträge zum Klimaschutz?46
16.1 Gefährdet der anthropogene CO₂-Ausstoß das globale Klima?46
16.2 Liefert PV relevante Beiträge zur Senkung des CO₂-Ausstoßes?48
16.3 Entstehen bei der Produktion von PV neben CO₂ weitere klimaschädliche Gase? 49
16.4 Heizen dunkle PV-Module durch ihre Absorption die Erde auf?50
17. Ersetzen PV-Anlagen fossile und nukleare Kraftwerke?50
18. Können wir einen wesentlichen Teil unseres Energiebedarfs durch PV- Strom decken? ..51
18.1 Ausgangspunkt: Energiebedarf und Energieangebot51
18.2 Energieszenarien ..55
18.3 Transformationsschritte ..59
18.3.1 Verstetigung der PV-Stromerzeugung ..59
18.3.2 Komplementärbetrieb von thermischen Kraftwerken60
18.3.3 Erhöhung der Energieeffizienz ...61
18.3.4 Lastmanagement ..62
18.3.5 Ausgewogener Zubau von PV- und Windkraftkapazitäten63
18.3.6 Netzausbau ..64
18.3.7 Strom-Wärme-Kopplung ..65
18.3.8 Elektromobilität ..65
18.3.9 Energiespeicherung ..66
18.3.10 Übersicht ..69
18.4 Muss die Energiewende auf die Bundespolitik warten?73
19. Brauchen wir eine PV-Produktion in Deutschland?74
20. Braucht es ein Erneuerbare-Energien-Gesetz (EEG)?74
21. Enthalten PV-Module giftige Substanzen? ..75
21.1 Waferbasierte Module ...75
21.2 Dünnschicht-Module ... 75
21.3 Solarglas .. 75
21.4 Rücknahme und Recycling.. 76

22. **Sind Rohstoffe zur PV-Produktion ausreichend verfügbar?** 76
 22.1 Waferbasierte Module .. 76
 22.2 Dünnschicht-Module ... 76

23. **Erhöhen PV-Anlagen das Brandrisiko?** ... 77
 23.1 Können defekte PV-Anlagen einen Brand auslösen?................................. 77
 23.2 Gefährden PV-Anlagen die Feuerwehrleute? ... 78
 23.3 Behindern PV-Module den direkten Löschangriff über das Dach? 78
 23.4 Entstehen beim Brand von PV-Modulen giftige Immissionen? 78

24. **Anhang: Fachbegriffe** .. 79
 24.1 EEG-Umlage .. 79
 24.2 Modulwirkungsgrad ... 80
 24.3 Nennleistung eines PV-Kraftwerks ... 80
 24.4 Spezifischer Ertrag .. 80
 24.5 Systemwirkungsgrad ... 81
 24.6 Performance Ratio ... 81
 24.7 Grundlast, Mittellast, Spitzenlast, Netzlast und Residuallast 81
 24.8 Brutto- und Netto-Stromverbrauch .. 82

25. **Anhang: Umrechnungstabellen [EEBW]** .. 83
26. **Anhang: Abkürzungen** .. 84
27. **Anhang: Quellen** .. 85
28. **Anhang: Abbildungen** .. 91
1. Wozu dieser Leitfaden?

2. Erreichen wir unser jährliches Zubauziel?

Das jährliche Zubauziel der Bundesregierung wurde 2018 erreicht, die Ziele der Energiewende bleiben in weiter Ferne.

Im Jahr 2018 wurden in Deutschland PV-Kraftwerke mit einer Nennleistung von 2,81 GW installiert, nach 1,66 GW im Vorjahr [AGEE]. Das am 1.1.2019 in Kraft getretene Energiesammelgesetz hat das jährliche Zubauziel („atmender Deckel“) von 2,5 GW auf 1,9 GW abgesenkt.

Der Koalitionsvertrag vom März 2018 sieht vor, den Anteil Erneuerbarer Energien (EE) bis 2030 auf 65 Prozent des Bruttostromverbrauchs anzuheben. Dazu ist u.a. ein stetiger jährlicher PV-Zubau im Fall eines stagnierenden Strombedarfs von mindestens 5 GW [AGORA], bei spürbar steigendem Strombedarf bis 10 GW [BEE] notwendig.

3. Liefert PV relevante Beiträge zur Stromversorgung?

Ja.

Im Jahr 2018 deckte die PV mit einer Stromerzeugung von 46 TWh [ISE4] ca. 8,7% des Netto-Stromverbrauchs in Deutschland, auf Basis der Verbrauchszahlen des Vorjahres [BDEW3]. Alle Erneuerbaren Energien (EE) kamen zusammen auf ca. 43% (Abbildung 1). Bezogen auf den Brutto-Stromverbrauch liegen die Anteile bei ca. 7,7% für PV und ca. 38% für alle EE.

An sonnigen Werktagen kann PV-Strom zeitweise bis zu 45%, an Sonn- und Feiertagen bis zu 60% unseres momentanen Stromverbrauchs abdecken. Ende 2018 waren in Deutschland PV-Module mit einer Nennleistung von 45,9 GW installiert [ISE4], verteilt auf über 1,6 Mio. Anlagen [BSW].
4. Ist PV-Strom zu teuer?

Das kommt auf den Bezugspunkt an. Der Kostenvergleich mit fossiler und nuklearer Stromerzeugung wird dadurch erschwert, dass externe Kosten durch Umwelt-, Klima- und Gesundheitsschäden als Folge von planmäßigen oder unfallbedingten Schadstoffemissionen außen vor bleiben ([UBA3], [FÖS1], [FÖS2]).

Die direkten und indirekten Folgekosten des globalen Klimawandels, die auch auf Deutschland zukommen, sind heute noch nicht abschätzigbar. Ob der Rückbau der Kernkraftwerke durch Rücklagen der Betreiber gedeckt ist, und ob die Endlagerung der radioaktiven Abfälle nicht mehr kostet als die 23 Mrd. €, die der Staat von den Betreibern für die Übernahme des deutschen Atommülls bekommt, ist heute nicht absehbar. Unfallschäden im Betrieb der Kernkraftwerke bis 250 Mio. € sind über den Versicherungsmarkt gedeckt, bis 2,5 Mrd. € über einen Betreiberpool, bei größeren Schäden haften die Betreiber der Kernkraftwerke nur mit ihrem Vermögen [ATW1]. Zum Vergleich: die Nuklearkatastrophe von Fukushima verursachte einen Scha-
den in Höhe von ca. 100 Mrd. € und liegt damit um ein Vielfaches über dem Unternehmenswert deutscher Kernkraftwerksbetreiber.

In neuen MW-Kraftwerken wird PV-Strom in Deutschland zu Kosten ab 4-5 ct/kWh produziert, unter der Voraussetzung, dass der Strom gemäß momentaner Erzeugungsleistung vollständig abgenommen wird. Ältere, kleinere Kraftwerke produzieren aufgrund der früher sehr hohen Investitionskosten deutlich teurer. Um die Energiewende zu fördern und Investitionen in PV-Anlagen verschiedener Größe anzuregen, wurde im Jahr 2000 das Instrument des EEG geschaffen.

Es soll dem Anlagenbetreiber bei garantiertener Abnahme einen wirtschaftlichen Betrieb mit angemessenem Gewinn ermöglichen. Ziel des EEG ist weiterhin, die Stromgestehungskosten aus EE durch die Schaffung eines Marktes für EE-Systeme kontinuierlich zu reduzieren (s. Abschnitt 4.1).

Der Aufbau der PV-Erzeugungskapazitäten ist nur ein Teil der Transformationskosten, die mit der Energiewende einhergehen. Lange Zeit stand dieser Teil im Vordergrund der Diskussion. In den letzten Jahren wurden PV (und Windkraft) jedoch systemrelevant, womit neue Kostenarten in das Blickfeld rücken. Neben den reinen Erzeugungskosten für Strom aus EE geht es zunehmend um Kosten für

- den Ausbau von Nord-Süd-Stromtrassen für Windstrom
- den Abbau der Kernkraftwerke
- den Rück- und Umbau des fossilen Kraftwerkparks für flexiblen Betrieb bei abnehmender Auslastung
- den Aufbau netzdienlicher Speicher- und Wandlerkapazitäten (stationäre Batterien und E-Mobilität, Pumpspeicher, Wärmepumpen, Wärmespeicher, Power-To-X)

Diese Kosten werden nicht durch den PV-Ausbau verursacht, sie gehen – ebenso wie der PV-Ausbau selbst - auf das Konto der Energiewende. Verursacher der Kosten für die Energiewende ist die Gesamtheit der Energieverbraucher, für die eine nachhaltige Energieversorgung geschaffen werden muss.

4.1 Stromgestehungskosten

Die Stromgestehungskosten eines PV-Kraftwerks bezeichnen das Verhältnis aus Gesamtkosten (€) und elektrischer Energieproduktion (kWh), beides bezogen auf seine wirtschaftliche Nutzungsdauer. Die Höhe der Stromgestehungskosten für PV-Kraftwerke [ISE1] wird v.a. bestimmt durch:

1. Anschaffungsinvestitionen für Bau und Installation der Anlagen
2. Finanzierungsbedingungen (Eigenkapitalrendite, Zinsen, Laufzeiten)
3. Betriebskosten während der Nutzungszeit (Versicherung, Wartung, Reparatur)
4. Einstrahlungsangebot
5. Lebensdauer und jährliche Degradation der Anlage
Die jährlichen Betriebskosten eines PV-Kraftwerks liegen mit ca. 1% der Investitionskosten vergleichsweise niedrig, auch die Finanzierungskosten sind aufgrund des aktuell niedrigen Zinsniveaus günstig. Der dominierende Kostenanteil von PV-Kraftwerken, die Investitionskosten, fielen seit 2006 dank technologischen Fortschritts, Skalen- und Lerneffekten im Mittel um ca. 13% pro Jahr, insgesamt um 75%. Abbildung 2 zeigt die Preisentwicklung für Aufdachanlagen von 10 bis 100 kWp, Nennleistung in Deutschland.

Abbildung 2: Durchschnittlicher Endkundenpreis (Systempreis, netto) für fertig installierte Aufdachanlagen von 10-100 kWp [ISE10]

Der Durchschnittspreis umfasst alle marktrelevanten Technologien, also kristallines Silizium und Dünnschicht. Der Trend deutet auf ca. 24% Preisreduktion bei einer Verdopplung der kumulierten installierten Leistung. Die Modulpreise in Deutschland liegen um 10-20% höher als auf dem Weltmarkt, gestützt durch Antidumping-Maßnahmen der EU-Kommission. Einen Orientierungswert für Stromgestehungskosten aus neuen PV-Freiflächenanlagen liefern die Ausschreibungen der Bundesnetzagentur (s. folgender Abschnitt).

4.2 Einspeisevergütung

Das EEG 2017 legt einen Ausbaukorridor für den Anteil der EE am Bruttostromverbrauch fest und versucht, den PV-Ausbau gleichzeitig zu fördern und zu behindern:

- Eigenverbrauch aus PV-Anlagen wird oberhalb einer Bagatellgrenze (ca. 10 kW Anlagen-Nennleistung) mit einer Abgabe von 40% der aktuellen EEG-Umlage belegt (Abschnitt 4.6), d.h. die PV-Stromgestehungskosten steigen um ca. 2,7 €ct/kWh
- neue Anlagen erhalten nur bis zu einer Nennleistung von 100 kW eine feste Einspeisevergütung
• für neue Anlagen mit einer Nennleistung von 100-750 kW besteht die Pflicht zur Direktvermarktung
• neue Anlagen ab einer Nennleistung von 750 kW sind zur Teilnahme an Ausschreibungen verpflichtet und dürfen nicht zur Eigenversorgung beitragen; das Ausschreibungsvolumen ist auf jährlich 600 MW begrenzt (d.h. auf knapp ein Viertel des jährlichen EEG-Ziels, damit weniger als ein Achtel dessen, was für eine Energiewende bis 2050 notwendig wäre), mit der weiteren Folge, dass besonders wenige jener Kraftwerke gebaut werden, die den deutlich günstigeren PV-Strom liefern können.
• es gibt zahlreiche weitere Auflagen bezüglich möglicher Errichtungsflächen, Fernsteuerbarkeit, Leistungsdruckelung u.a.

Abbildung 4: EEG-Vergütung für PV-Strom nach dem Datum der Inbetriebnahme des Kraftwerks, mittlere Vergütung in den Ausschreibungen der Bundesnetzagentur, Strompreise aus [BMWi1], [BDEW6], durchschnittliche Vergütung für PV-Strom [BMWi5]

Die Einspeisevergütung für PV-Strom sinkt schneller als bei jeder anderen regenerativen Stromquelle, in den letzten 15 Jahren ca. 80% bei Kleinanlagen und 90% bei Anlagen mittlerer Größe.

Ab dem Jahr 2020 werden die jeweils ältesten Anlagen nach und nach aus der EEG-Vergütung ausscheiden, weil die 20-jährige Bindungsfrist ausläuft. Sie werden aber noch weiter Strom liefern, dessen Gestehungskosten wegen niedriger Betriebskosten und fehlender Brennstoffkosten („Grenzkosten“) alle anderen fossilen oder erneuerbaren Quellen unterbieten.

4.3 Preisbildung an der Strombörse und der Merit Order Effekt

Abbildung 5: Preisbildung an der EEX [Roon]

Abbildung 6: Einfluss von EE auf die durchschnittlichen Spotpreise an der Strombörse [BDEW2]

Die zunehmende Einspeisung von EE-Strom, gesunkene Kohlepreise und ein Überangebot an CO2-Zertifikaten haben die Strompreise an der Börse massiv gesenkt (Abbildung 7).

PV-Strom erzielt an der Strombörse im Jahresmittel einen Marktwertfaktor von 1, d.h. dass die erzielten Erlöse pro kWh dem durchschnittlichen Börsenstrompreis entsprechen. Bei Windstrom liegt der Marktwertfaktor um 0,9 [ÜNB]. Mit weiterem Zubau volatiler EE wird deren Marktwert mittelfristig sinken, weil das Stromangebot zu Zeiten hoher Einspeisung wächst und die Einspeisung angebotsseitig gesteuert wird.

Mit zunehmender Einspeisung von EE-Strom wurde die Leipziger Strombörse zu einer Residualstrombörse. Sie generiert einen Preis für die bedarfsgerechte Ergänzung der erneuerbaren Stromerzeugung und bildet nicht mehr den Wert des Stroms ab.
4.4 Ermittlung der Differenzkosten

Abbildung 7: Entwicklung des für die Wertermittlung genutzten mittleren Börsenstrompreises und der daraus resultierenden Differenzkosten [BDEW2]

Abbildung 8 zeigt die Entwicklung der Differenzkosten für die Vergütung des erzeugten PV-Stroms. Nach einem starken Anstieg bis zum Jahr 2014 hat sich der Betrag zwischen 9 und 10 Mrd. € stabilisiert.
4.5 Privilegierte Verbraucher

Die Politik definiert, wer den Umstieg auf erneuerbare Energien finanzieren muss [BAFA]. Sie hat entschieden, energieintensive Industriebetriebe mit einem hohen Stromkostenanteil weitgehend von der EEG-Umlage zu befreien. Im Jahr 2018 wurde damit knapp die Hälfte des Industrieverbrauchs privilegiert (Abbildung 9). Diese umfassende Befreiung erhöht die Belastung für andere Stromkunden, insbesondere für Privathaushalte, auf die knapp 30% des gesamten Stromverbrauchs entfällt.

Die Privilegierung hat den Anstieg der EEG-Umlage pro kWh verstärkt (Abschnitt 5.5). Dabei profitiert die energieintensive Industrie von der preissenkenden Wirkung des PV-Stroms an der Börse zu Spitzenlastzeiten. Damit fließt ein Teil der PV-Umlage indirekt der energieintensiven Industrie zu: „Energieintensive Unternehmen, die größtenteils von der EEG-Umlage befreit sind bzw. nur einen ermäßigten Satz von 0,05 ct/kWh zahlen, profitieren vom Merit Order Effekt am stärksten. Bei ihnen überkompensiert die preissenkende Wirkung durch den Merit Order Effekt die Kosten für die EEG-Umlage bei weitem.“ [IZES] Die stromintensive Industrie profitiert von der Energiewende, ohne sich nennenswert an ihren Kosten zu beteiligen.
4.6 EEG-Umlage

Die Differenz zwischen Vergütungszahlungen und Verkaufserlösen für EE-Strom, ergänzt um weitere Positionen, werden über die EEG-Umlage ausgeglichen (Abbildung 10). Die Umlage tragen jene Stromverbraucher, die sich nicht befreien lassen können. Für das Jahr 2019 wurde die EEG-Umlage auf $6,405 \text{ ct/kWh}$ festgelegt. Letztverbraucher müssen auf die Umlage noch 19% Umsatzsteuer entrichten, so dass die Umlagekosten für private Haushalte auf $7,62 \text{ ct/kWh}$ ansteigen.

Abbildung 10: Übersicht zu Einflussfaktoren und Berechnung der EEG-Umlage [ÖKO]
Abbildung 11 zeigt das Auseinanderdriften zwischen EEG-Umlage und EEG-Auszahlungssumme seit der Einführung des Umlagemechanismus auf Basis der Börsenstrompreise am EEX-Spotmarkt im Jahr 2010, der zunehmenden Umlagebefreiung für die energieintensive Industrie und anderen Maßnahmen. Dabei wurde der Anstieg der Differenzkosten bereits durch die börsenpreissenkende Wirkung der PV-Stromeinspeisung künstlich verstärkt.

Die EEG-Umlage wird aufgrund ihrer Festlegung durch folgende Faktoren erhöht:

1. steigende „privilegierte“ Strommengen
 Weil die stromintensive Industrie von der Umlage praktisch befreit ist, tragen kleinere Verbraucher, also Haushalte sowie industrielle und gewerbliche Verbraucher Mehrkosten in Milliardenhöhe

2. der Merit Order Effekt und die tageszeitliche Einspeisung von PV-Strom
 Die Einspeisung von PV-Strom zu Tageszeiten mit ehemals höchsten Börsenstrompreisen senkt diese besonders wirksam (Kapitel 4.3), zum Vorteil großer Verbraucher. Sie erhöht aber gleichzeitig die Differenz zwischen Einspeisevergütung und Börsenpreis, der die Grundlage für die Berechnung der Umlage darstellt, zum Nachteil kleiner, umlagepflichtiger Verbraucher.

3. der Merit Order Effekt und die Überproduktion von Strom
 Seit Jahren wird in Deutschland zunehmend mehr Strom produziert als notwendig (Kapitel 6), und zwar durch fossile und nukleare Kraftwerke mit geringeren Grenzkosten als teure Spitzenlastkraftwerke. Dieses Überangebot senkt den Börsenstrompreis über den Merit Order Effekt und verdrängt Spitzenlastkraftwerke aus dem Erzeugungsmix.

4. sinkender Stromverbrauch durch Effizienzmaßnahmen
 Maßnahmen zur effizienteren Nutzung von elektrischer Energie (z.B. Energiesparlampen) senken den Strombezug und erhöhen damit die Umlage pro verbrauchter kWh

5. Mehraufwand durch den Direktvermarktungszwang
Der Zwang zur Direktvermarktung erzeugt einen administrativen Mehraufwand, der für die Stromproduzenten durch eine erhöhte Vergütung ausgeglichen werden muss.

6. steigende Produktion von Strom aus EE, soweit kein Eigenverbrauch
Der an sich erwünschte Ausbau der EE-Stromerzeugung erhöht zumindest kurzfristig die Umlage, sowohl direkt, weil mehr Einspeisevergütung ausgezahlt wird, als auch indirekt über den Preisverfall von Emissionszertifikaten, der zu einem billigeren Stromangebot fossiler Kraftwerke führt.
5. Subventionen und Strompreise

5.1 Wird PV-Strom subventioniert?

5.2 Wird die fossile und nukleare Stromerzeugung subventioniert?

Ja.

Abbildung 12: Entwicklung der CO₂-Zertifikatspreise [BDEW6]

5.3 Subventionieren Mieter gut situierte Hauseigentümer?

Nein.

Anlagen der Leistungsklasse unter 10 kWP, die häufig von Hauseigentümern erworben werden, machen in der Summe weniger als 15% der gesamten installierten Leistung aus (Abbildung 22). Sehr große Anlagen in der Leistungsklasse oberhalb 500 kWP kommen hingegen auf ca. 30%. Größere Anlagen werden häufig über Bürgerbeteiligungen oder Fonds finanziert, an denen sich natürlich auch Mieter beteiligen können.

5.4 Verteuert PV-Stromerzeugung den Strom für Privathaushalte?

Ja.

Privathaushalte tragen viele zusätzliche Lasten auf ihrer Stromrechnung. Der Gesetzgeber legt die Berechnungsgrundlage und den Verteiler für die EEG-Umlage sowie weitere Steuern und Abgaben fest, mit zurzeit nachteiligen Effekten für Privathaushalte.

Abbildung 14: Entwicklung von Brutto-Strompreisen für Haushalte (2017 geschätzt bei 3% Erhöhung), von Netto-Strompreisen für industrielle Großabnehmer [BMWi1] und Entwicklung der EEG-Umlage; die Brutto-Strompreise der Haushalte bestehen heute zu ca. 55% aus Steuern und Abgaben
In vielen Ländern Europas liegt der Strompreis für Privathaushalte deutlich niedriger als in Deutschland. Berücksichtigt man jedoch die Kaufkraft der Länder, so liegt Deutschland im europäischen Mittelfeld. Hinzu kommt die hohe Versorgungssicherheit: in Niedrigpreisländern wie Rumänien oder Bulgarien sind Stromausfälle an der Tagesordnung.

5.5 **Verteuert PV den Strom für die Industrie?**

Abbildung 15: VIK Strompreisindex Mittelspannung [VIK]
6. Exportieren wir massiv PV-Strom ins europäische Ausland?

Abbildung 16: Stromexport (als negative Werte) für Deutschland [ISE4]

Dass der deutsche Kraftwerkspark vermehrt für den Export produziert, dürfte auch mit den geringen Erzeugungskosten für Kohlestrom, insbesondere den geringen CO₂-Zertifikatspreisen (Abschnitt 5.2) der letzten Jahre zusammenhängen.
7. Kann eine neue PV-Anlage gute Renditen bringen?

Ja.

Der Ertrag einer Anlage fällt in sonnenreichen Regionen höher aus als in Gegenden mit geringerer Einstrahlung. Tatsächlich überträgt sich der regionale Unterschied in der Einstrahlung nicht 1:1 auf den spezifischen Ertrag (kWh/kWp, Abschnitt 24.4), weil bspw. auch die Betriebstemperatur der Module oder die Dauer der Schneeanflage eine Rolle spielen.

Abbildung 17: Grobe Abschätzung der Stromgestehungskosten für PV-Anlagen unter verschiedenen Einstrahlungsbedingungen
Zur groben Abschätzung der abgezinsten (diskontierten), nicht-inflationsbereinigten Stromgestehungskosten (Abbildung 17) wurden folgende Annahmen getroffen:

- optimale Ausrichtung der Fläche (ca. Süd 30°)
- Performance Ratio (Abschnitt 24.6) 85%
- jährliche Anlagendegradation bezüglich Ertrag 0,5%
- Nutzungsdauer 20 Jahre
- lfd. jährliche Kosten 1% (des Anlagenpreises)
- Inflationsrate 0%
- nominaler kalkulatorischer Zinssatz 3% (Mittelwert aus Eigen- und Fremdkapital)

Die Jahressumme der mittleren, global-horizontalen Einstrahlung liegt in Deutschland bei 1055 kWh/m²/a [DWD]. Die Abschätzung der Stromgestehungskosten (LCOE – Levelized Costs of Electricity) erfolgt auf Basis der Kapitalwertmethode. Dabei werden die laufenden Ausgaben und die LCOE über den angegebenen Zinssatz auf den Zeitpunkt der Inbetriebnahme abgezinst (diskontiert). Die Angabe der LCOE erfolgt nicht inflationsbereinigt, um den Vergleich mit der nominal konstanten, aber real sinkenden Einspeisevergütung zu erleichtern.

Bei vollständiger Finanzierung durch Eigenkapital entspricht der kalkulatorische Zinssatz der erzielbaren Rendite. Zum Vergleich: die Bundesnetzagentur hat die Eigenkapitalrenditen für Investitionen in die Strom- und Gasnetze für Neu- bzw. Erweiterungsinvestitionen auf 9,05 Prozent vor Körperschaftsteuer festgelegt [BNA1].

8. Erzeugt die PV-Branche nur Arbeitsplätze in Asien?

Nein, aber Deutschland hat in den letzten Jahren viele Arbeitsplätze in der PV-Branche verloren.

1. Materialherstellung (Silicium, Wafer, Metallpasten, Kunststofffolien, Solarglas)
3. Produktionsanlagenbau
4. Installation (v. a. Handwerk)

Trotz der hohen Importquote bei PV Modulen bleibt ein großer Teil der mit einem PV-Kraftwerk verbundenen Wertschöpfung im Land. Wenn man annimmt, dass 80% der hier installierten PV-Module aus Asien kommen, diese Module ca. 60% der Kosten eines PV-Kraftwerks ausmachen (Rest v.a. Wechselrichter und Installation) und die Kraftwerkskosten ca. 60% der Stromgestehungskosten ausmachen (Rest: Kapitalkosten), dann fließen über die Modulimporte knapp 30% der Einspeisevergütung nach Asien. Zusätzlich ist zu berücksichtigen, dass ein Teil der asiatischen PV-Produktion Anlagen aus Deutschland nutzt.

Langfristig werden sinkende Herstellkosten von PV-Modulen auf der einen, steigende Frachtkosten und lange Frachtzeiten auf der anderen Seite die Wettbewerbsposition für die Modulherstellung in Deutschland verbessern.
9. Zeigen große deutsche Energieversorger Interesse an PV?

Die in Deutschland betriebene PV-Leistung befand sich noch 2016 überwiegend im Eigentum von Privatpersonen, Landwirten und Gewerbebetrieben. Die großen Kraftwerksbetreiber (die „Großen 4“ in Abbildung 18) hielten magere 0,2%. Woher kommt diese Abneigung?

1. Der Stromverbrauch in Deutschland ist seit dem Jahr 2007 tendenziell rückläufig bis stabil. Der Zubau von Erzeugungskapazitäten im Bereich der EE verringert deshalb die Auslastung des bestehenden Kraftwerksparks oder erfordert steigenden Stromexport.

5. Der Übergang von zentralen Kohle- und Kernkraft-Großanlagen auf Schwarmerzeugung durch PV erfordert radikal neue Geschäftsmodelle. Im Segment der Windkraft, insbesondere Offshore, ist dies weniger der Fall.

Während große Kraftwerksbetreiber bisher wenig Interesse an PV-Installationen gezeigt haben, passen große Windprojekte, vor allem im Offshore-Bereich, viel besser in ihr Geschäftsmodell.

Abbildung 18: Anteile der Eigentümer an der Ende 2016 betriebenen PV-Kraftwerksleistung [AEE3]

Viele der ca. 1000 kommunalen Energieversorger in Deutschland haben die Herausforderung der Energiewende frühzeitig erkannt und reagieren mit neuen Produkten und integrativen Konzepten, bspw. „virtuellen Kraftwerken“ (Abbildung 19).
Abbildung 19: Konzept für ein virtuelles Kraftwerk der Stadtwerke München [SWM]
10. Welche Fördermittel gehen in die PV-Forschung?

Ein Blick in die historischen Zahlen (Abbildung 20) zeigt, dass erneuerbare Energien und Energieeffizienz in den Fokus der Energieforschung rücken. Nachfolgende Abbildung 21 zeigt die von den zuständigen Ministerien bewilligten Fördermittel für die PV-Forschung.

Abbildung 20: Ausgaben im Energieforschungsprogramm des Bundes nach Themen in Mio. € [BMWi6]

Abbildung 21: Fördermittel für PV-Forschung nach Technologien [BMWi6]
11. Überlastet PV-Strom unser Energiesystem?

11.1 Übertragung und Verteilung

Über 98 Prozent der Solarstromanlagen in Deutschland sind an das dezentrale Niederspannungsnetz angeschlossen (Abbildung 22) und erzeugen Solarstrom verbrauchsnah [BSW].

Abbildung 22: Links: Einspeisung von PV-Strom [BSW], Rechts: Verteilung der installierten PV-Leistung nach Anlagengröße [ISE10]

Der dezentrale, flächige Charakter der Stromerzeugung durch PV kommt einer Aufnahme und Verteilung durch das bestehende Stromnetz entgegen. Große PV-Kraftwerke oder lokale Häufungen kleinerer Anlagen in dünn besiedelten Gebieten erfordern stellenweise eine Verstärkung des Verteilnetzes und der Trafostationen.

Der weitere PV-Ausbau sollte geografisch noch verbrauchsgerechter erfolgen, um die Verteilung des Solarstroms zu erleichtern. Pro Einwohner haben Brandenburg oder Mecklenburg-Vorpommern beispielsweise 3- bis 4 mal mehr PV-Leistung installiert als bspw. das Saarland, Sachsen oder Hessen [AEE2].
Laut einer Studie der Agora Energiewende wird das deutsche Stromnetz auch bei einer installierten PV-Leistung von knapp 100 GW im Jahr 2030 die erforderlichen Strommengen transportieren können [AGORA]. Dazu sind vor allem Maßnahmen zur Modernisierung und besseren Nutzung der Bestandsnetze erforderlich, jedoch kein nennenswerter Ausbau.

Abbildung 23: Abgeregelte elektrische Energie in GWh/Jahr [BNA3]
11.2 Volatilität

11.2.1 Solarstrom-Produktion ist planbar

11.2.2 Spitzenproduktion deutlich kleiner als installierte PV-Leistung

Eine Abregelung auf der Ebene der einzelnen Anlage auf 70% ihrer Nennleistung führt zu Einnahmeverlusten von ca. 2-5%. Eine gesetzliche Regelung, die diese Abregelung für kleine Anlagen faktisch vorschreibt, trat 2012 in Kraft.
11.2.3 Sonnen- und Windstrom ergänzen sich

Abbildung 26 zeigt die Stromproduktion PV + Wind für Deutschland im Jahr 2017 auf Stundenbasis. Während die installierte Leistung PV + Wind zum Jahresende bei ca. 98 GW lag, erfolgten nur 3% der Stromproduktion oberhalb einer Leistung von 30 GW.

Abbildung 26: Stromproduktion PV + Wind in aufsteigend geordneten Stundenwerten für das Jahr 2017
Auch auf Tagesbasis führt die Kombination von PV- und Windstrom zu einer Stabilisierung des Ertrags. Während die relative mittlere absolute Abweichung der Tagesstromproduktion vom arithmetischen Mittel im Jahr 2017 bei PV 58% und bei Wind 56% betrug, lag der Wert für PV + Wind nur bei 38%.

11.3 Regelbarkeit

„…eine überwiegend dezentrale und verbrauchsnahe PV-Einspeisung in die Verteilnetze reduziert Kosten für den Netzbetrieb, insbesondere im Hinblick auf das Übertragungsnetz. Ein weiterer Vorteil der PV-Einspeisung ist, dass PV-Anlagen zusätzlich zur Einspeisung von Wirkleistung prinzipiell weitere Netzdienstleistungen (z.B. lokale Spannungsregelung) kostengünstig bereitstellen können. Sie eignen sich hervorragend zur Integrati-
on in übergeordnete Netzmanagement-Systeme und können einen Beitrag zur Verbesserung der Netzstabilität und Netzqualität leisten.“ [ISET2]

11.4 Konflikte mit trägen fossilen und nuklearen Kraftwerken

Das Erzeugungsprofil von PV-Strom passt so gut zu dem Lastprofil des Stromnetzes, dass der gesamte Strombedarf im Band von 40-80 GW auch bei weiterem Ausbau der PV in den nächsten Jahren jederzeit über dem PV-Stromangebot liegen wird. Allerdings nehmen die Konflikte mit trägen Kraftwerken zu, die einer schwankenden Residuallast aus technischen und wirtschaftlichen Gründen nur sehr eingeschränkt folgen können. Ältere Kohlekraftwerke, insbesondere Braunkohlekraftwerke, können keine Regelenergie in einer wirtschaftlich vertretbaren Weise beisteuern. Kernkraftwerke sind technisch in der Lage, Leistungsgradienten von bis zu 2%/min und Leistungshübe von 50 bis 100% zu fahren [ATW2], bisher werden sie aus wirtschaftlichen Gründen jedoch selten gedrosselt. Grundsätzlich müssen jedoch die volatilen Erzeuger mit ihren vernachlässigbaren Grenzkosten Vorfahrt erhalten.

Während Hitzeperioden war es in der Vergangenheit durch fossile und nuklare Kraftwerke zu einer kritischen Erwärmung der als Kühlreservoire genutzten Flüsse gekommen. Die in Deutschland installierte Photovoltaik hat dieses Problem beseitigt und kann solche Situationen auch in Nachbarländern wie Frankreich entspannen, weil sie die Auslastung der fossilen und nuklaren Kraftwerke besonders an Sommertagen grundsätzlich reduziert.
11.5 Gefährdet volatiler Solarstrom die Versorgungssicherheit?

Nein.

Abbildung 29: System Average Interruption Duration Index (SAIDI) für verschiedene Netzebenen in Minuten/Jahr [BNA3]

11.6 Muss der PV-Ausbau auf Speicher warten?

Nein, nicht in den nächsten Jahren.
Investitionen in Speicher lohnen sich erst, wenn häufig große Preisdifferenzen für Strombezug auftreten, sei es an der Strombörse oder bei Endabnehmern. Derzeit werden Investitionen in Speicher, konkret Pumpspeicher, sogar zurückgestellt, weil kein wirtschaftlicher Betrieb möglich ist.
Eine Studie der AGORA Energiewende benennt 12 Maßnahmen zur Modernisierung der Netze, um bis zum Jahr 2030 u.a. ca. 100 GW installierte PV-Leistung aufzunehmen [AGORA].
12. Verschlingt die Produktion von PV-Modulen mehr Energie als diese im Betrieb liefern können?

Nein.
Der Erntefaktor (Energy Returned on Energy Invested, ERoEI oder EROI) beschreibt das Verhältnis der von einem Kraftwerk bereitgestellten Energie und der für seine Errichtung aufgewendeten Energie. Die Energierücklaufzeit oder energetische Amortisationszeit gibt die Zeitspanne an, die ein Kraftwerk betrieben werden muss, um die investierte Energiemenge bereitzustellen.

13. Gibt es in Deutschland genügend Flächen für PV?

Ja, und zwar ohne eine nennenswerte Inanspruchnahme von Ackerflächen.
Eine Studie im Auftrag des Bundesministeriums für Verkehr und digitale Infrastruktur schätzt das Ausbaupotential an restriktionsfreien Freiflächen für PV-Freiflächenanlagen auf über 3000 km² [BMVI]. Bei einem Flächenverbrauch von 1,4 ha/MW nach aktuellem Stand der Technik bieten diese Flächen ein technisches Potenzial von 228 GW. Eine Studie des Umweltbundesamtes schätzt die versiegelten Siedlungsflächen auf über 670 km² aus [UBA], entsprechend 134 GW an technischem Potenzial für PV-Installationen.

Gebäudehüllen, d.h. Dächer und Fassaden, bieten ein technisches Potenzial von über 1 TW [FATH]. PV-Module können nicht nur auf bestehende Flach- oder Schrägdächer montiert werden, auch Produkte für die Gebäudeintegration (BIPV) sind kommerziell verfügbar. Dazu zählen PV-Dachziegel, PV-Dachfolien, Module für Kaltfassaden, Wärmedämm-Verbundsysteme (WDVS) mit PV, opake und transparente PV-Isoliergläser.

Der Braunkohletagebau hat in Deutschland eine Fläche von 1773 km² [UBA4] zerstört, mehr als die dreifache Fläche des Bodensees. Wird ein Viertel dieser Fläche geflutet und
mit schwimmender PV (FPV, von „Floating PV“) belegt, so eröffnet sich ein technisches Potenzial von **55 GW**. Weltweit sind bereits über 1 GW an schwimmenden PV-Anlagen installiert.

Weiteres Potenzial im GW-Maßstab bieten Lärmschutzwände, ausgesuchte Verkehrsflächen, Gleiskörper und perspektivisch die Dächer von Elektrofahrzeugen.

14. Finden PV-Kraftwerke Akzeptanz in der Bevölkerung?

Ja.

Zur Stromerzeugung in der Nachbarschaft finden eher gut bzw. sehr gut...

<table>
<thead>
<tr>
<th>Anlage</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-Anlagen allgemein</td>
<td>63%</td>
</tr>
<tr>
<td>Solarpark</td>
<td>77%</td>
</tr>
<tr>
<td>Windenergieanlage(n)</td>
<td>55%</td>
</tr>
<tr>
<td>Biogasanlage</td>
<td>40%</td>
</tr>
<tr>
<td>Gaskraftwerk</td>
<td>19%</td>
</tr>
<tr>
<td>Kohlekraftwerk</td>
<td>7%</td>
</tr>
<tr>
<td>Atomkraftwerk</td>
<td>5% 4%*</td>
</tr>
</tbody>
</table>

Befragte mit entsprechenden Anlagen in der eigenen Nachbarschaft

Abbildung 30: Umfrageergebnisse zur Akzeptanz verschiedener Kraftwerkstypen [AEE4]
Aus dem Blickwinkel nicht-privilegierter Stromverbraucher steht es weniger gut um die Akzeptanz des PV-Ausbaus an sich. Das überrascht nicht, führt doch die Ausgestaltung des EEG-Umlagemechanismus dazu, dass überwiegend private Haushalte und kleinere Betriebe die Kosten der Energiewende zu tragen haben (s. Abschnitt 4).

15. Arbeiten PV-Anlagen in Deutschland effizient?

Der nominelle Wirkungsgrad (s. Abschnitt 24.2) von kommerziellen waferbasierten PV-Modulen (d.h. Module mit Solarzellen auf Basis von Siliciumscheiben) aus neuer Produktion stieg in den letzten Jahren um ca. 0,3%-Punkte pro Jahr auf Mittelwerte von etwas über 17% [ISE10] und Spitzenwerte über 22%. Pro Quadratmeter Modul erbringen sie damit eine Nennleistung von 170 W, Spitzenmodule bis über 200 W.

In Deutschland werden je nach Einstrahlung und PR spezifische Erträge um 900-950, in sonnigen Gegenden über 1000 kWh/kWp erzielt. Pro Quadratmeter Modul entspricht dies ca. 150 kWh, bei Spitzenmodulen ca. 180 kWh. Ein durchschnittlicher 4-Personen-Haushalt verbraucht pro Jahr ca. 4400 kWh Strom, dies entspricht dem Jahresertrag von 30 m² neuen Modulen mittleren Wirkungsgrades. Die ungefähr nach Süden orientierte und mäßig geneigte Dachfläche eines Einfamilien-Hauses reicht somit rechnerisch aus, um den Jahresstrombedarf einer Familie in Summe über eine PV-Anlage mit ca. 20 Modulen zu erzeugen.

Auf flachen Dächern und im Freiland werden Module aufgeständert, um ihren Ertrag zu erhöhen. Wegen der dafür notwendigen Beabstandung belegen sie bei Südorientierung ungefähr das 2- bis 2,5-fache ihrer eigenen Fläche, abhängig vom Aufstellwinkel. Für das Jahr 2015 wurde für Freiflächenanlagen ein durchschnittlicher Flächenbedarf von 1,6 ha pro Megawatt installierte Leistung errechnet, bei stark fallender Tendenz [BNA4].

Zum Vergleich: Bei Verstromung von Energiepflanzen liegt der auf die Einstrahlung bezogene Wirkungsgrad deutlich unter 1%. Dieser Wert sinkt weiter, wenn fossile organische Materie als Kohle, Öl oder Erdgas verstromt wird. Entsprechende Verbrennungskraftwerke beziehen ihre Wirkungsgradangabe aber normalerweise auf die Konversion der bereits vorhandenen chemischen Energie im fossilen Energieträger. Für Kohlekraftwerke in Deutschland wird dann bspw. ein mittlerer Wirkungsgrad um 38% angegeben. Bei der Verbrennung von Biokraftstoffen in Fahrzeugen erreicht man auch nur bescheidene Effizienzen bezogen auf die eingestrahlte Energie und die Flächennutzung. Abbildung 31 vergleicht die Gesamtreichweiten von Fahrzeugen, die verschiedene Biokraftstoffe verbrennen, mit der Gesamtreichweite eines Elektrofahrzeugs (Plug-In-
Hybridantrieb), dessen elektrische Antriebsenergie durch ein PV-Feld gleicher Größe bereitgestellt wird.

Abbildung 31: Fahrzeugreichweite mit dem Jahresertrag von 1 a = 100 m² Energiepflanzenanbau (2,3) und von 40 m² PV-Modulen, aufgeständert auf 100 m² ebener Grundfläche, Quellen: Photon, April 2007 (1) und Fachagentur Nachwachsende Rohstoffe (2), (3)

In Südspanien oder Nordafrika lassen sich spezifische Erträge bis 1600 kWh/kWp erzielen, allerdings würden lange Leitungswege nach Deutschland zu Energieverlusten und Kostenaufschlägen führen. Abhängig von der Spannungsebene liegen die Leitungsverluste zwischen 0,5 - 5% pro 100 km. Über Leitungen zur Hochspannungs-Gleichstrom-Übertragung (HGÜ) lassen sich die Transportverluste auf knapp 0,3% pro 100 km reduzieren, dazu kommen Konversionsverluste. Eine 5000 km lange HGÜ-Leitung würde somit ca. 14% reine Leitungsverluste aufweisen.

15.1 Degradieren PV-Anlagen?

Ja, aber sehr langsam.

15.2 Verschmutzen PV-Module?

Ja, aber die allermeisten Anlagen in Deutschland reinigt der nächste Regen wieder, so dass Schmutz praktisch keine Ertragseinbußen bewirkt. Problematisch sind Module mit sehr flachem Aufstellwinkel, naher Laubabwurf oder nahe Staubquellen.

15.3 Arbeiten PV-Anlagen selten unter Volllast?

Abbildung 32: Prognostizierte Vollbenutzungsstunden für ganzjährig betriebene Anlagen, gemittelte Werte für die Jahre 2012 bis 2016, Daten aus [ÜNB]

Die horizontale Einstrahlungssumme gemittelt Deutschland für die Jahre 1981-2010 liegt bei 1055 kWh/m²/a und schwankt je nach Standort zwischen ca. 950-1260 kWh/m²/a [DWD]. Abbildung 33 zeigt die landesweite Verteilung. PV-Module werden zur Ertragsmaximierung mit einer Neigung von ca. 30-40° zur Horizontalen montiert und nach Süden ausgerichtet. Damit erhöht sich die Einstrahlungssumme bezogen auf die Modulebene um ca. 15%, bezogen auf die horizontale Einstrahlungssumme und ergibt im geografischen Mittel für Deutschland ca. 1200 kWh/m²/a. Bei einer Performance Ratio (PR, siehe Abschnitt 24.6) von 85% und idealer Ausrichtung wären damit im geografischen Mittel über Deutschland 1030 Volllaststunden zu erreichen. Weil nicht alle Dachanlagen ideal ausgerichtet sind und noch viele Anlagen mit
kleineren PR arbeiten, liegt die tatsächliche mittlere Vollaststundenzahl etwas niedriger. Technische Verbesserungen der Module und der Installation können die nutzbare Einstrahlung, die PR, den Ertrag und damit die Zahl der Vollaststunden einer PV-Anlage anheben. Dazu zählen

- Nachführung (Abschnitt 18.3.1)
- bifaziale PV-Technologie
- die Verringerung von Verlusten durch Verschattung
- die Verringerung des Temperaturkoeffizienten der Solarzellen
- die Verringerung der Betriebstemperatur der Module durch gute Hinterlüftung
- die Verbesserung des Schwachlicht- und des Schräglichtverhaltens der Module
- die Verringerung von Verlusten durch Schneeabdeckung und Verschmutzung
- die frühzeitige Erkennung und Behebung von Minderleistung
- die Verringerung von Degradation über die Lebensdauer

Abbildung 33: Horizontale jährliche Globalstrahlungssumme in Deutschland, gemittelt über den Zeitraum 1981-2010 [DWD]
16. Liefert PV relevante Beiträge zum Klimaschutz?

16.1 Gefährdet der anthropogene CO$_2$-Ausstoß das globale Klima?

Ja. Die große Mehrheit der Fachleute sieht ein erhebliches Risiko. Die zunehmende globale Erwärmung ist zweifelsfrei erwiesen [IPCC]. Im Vergleich zum präindustriellen Zeitalter ist die mittlere globale Temperatur um 0,8 °C angestiegen [IEA2]. Die große Mehrheit der Wissenschaftsgemeinde geht davon aus, dass anthropogene Emissionen von CO$_2$ und anderen Treibhausgasen den Anstieg der atmosphärischen Treibhausgas-Konzentration und darüber den mittleren globalen Temperaturanstieg mit sehr hoher Wahrscheinlichkeit („extremely likely“) wesentlich verursachen. Im Mai 2013 hat die atmosphärische CO$_2$-Konzentration erstmals seit mindestens 800.000 Jahren den Wert von 400 ppm erreicht. Abbildung 34 und Abbildung 35 zeigen die bisherige Entwicklung der atmosphärischen CO$_2$-Konzentration und der globalen bzw. antarktischen Temperatur.

Abbildung 34: Entwicklung der atmosphärischen CO$_2$-Konzentration und der mittleren globalen Temperaturveränderung nach dem NASA Global Land-Ocean Temperature Index [IEA2].

Ein schneller globaler Temperaturanstieg gefährdet in einem noch wenig verstandenen Ausmaß die Stabilität des globalen Klimasystems, die Ernährungsgrundlage der Weltbevölkerung, küstennahe Siedlungsgebiete sowie die ohnehin unter hohem Druck stehende Diversität an Arten und Biotopen.
Abbildung 35: Schätzungen der atmosphärischen CO₂-Konzentration und der Temperatur in der Antarktis auf Basis von Eisbohrkernen [EPA], CO₂-Konzentration für 2016 wurde hinzugefügt
16.2 Liefern PV relevante Beiträge zur Senkung des CO₂-Ausstoßes?

Ja.

Im Jahr 2017 wurden durch die Nutzung der PV in Deutschland netto ca. 24 Mio. Tonnen Treibhausgasemissionen vermieden (Abbildung 36).

Abbildung 36: Vermiedene Treibhausgasemissionen durch die Nutzung erneuerbarer Energien im Jahr 2017 [UBA1]

Die höchste Durchschlagskraft bezüglich CO₂-Vermeidung erzielt das EEG jedoch über eine „Nebenwirkung“: durch Schaffung des international größten und sichersten Absatzmarktes für PV über mehrere Jahre hat es die globale Skalierung, Technologieent-
wicklung und Preissenkung wesentlich beschleunigt (Abbildung 37). PV senkt weltweit den Verbrauch fossiler Rohstoffe für die Stromerzeugung.

Abbildung 37: Entwicklung des jährlichen PV-Zubaus für Deutschland und die restliche Welt, Zahlen von EPIA (bis 2010), IHS (bis 2017), PV Market Alliance (Schätzung 2018) und Trendforce (Prognose 2019).

Das deutsche EEG hat damit PV-Strom für viele Menschen in Entwicklungsländern schneller erschwinglich gemacht. Aus dieser Perspektive ist das EEG nebenbei „das vermutlich erfolgreichste Entwicklungshilfeprogramm aller Zeiten in diesem Bereich” (Bodo Hombach im Handelsblatt 11.1.2013), das auch in den Entwicklungsländern erhebliche Mengen an CO₂ einspart.

16.3 Entstehen bei der Produktion von PV neben CO₂ weitere klimaschädliche Gase?

16.4 Heizen dunkle PV-Module durch ihre Absorption die Erde auf?

Die Solarstrahlungsbilanz liefert einen wichtigen Beitrag zum Wärmehaushalt der Erde. Helle Oberflächen reflektieren einen größeren Teil der auftreffenden Solarstrahlung zurück in den Weltraum, während dunkle Oberflächen stärker absorbieren und damit die Erde aufheizen.

Die Installation von PV-Modulen verändert den Reflexionsgrad (die Albedo) der durch sie bedeckten Erdoberfläche. Wenn PV-Module mit einem Wirkungsgrad um 17% Sonnenenergie in elektrische Energie umwandeln und zusätzlich einen kleinen Teil der Einstrahlung über Reflexion zurückwerfen, erzeugen sie (lokal) so viel Wärme wie eine Oberfläche mit ca. 20% Albedo. Asphalt weist zum Vergleich eine Albedo um 15% auf, Rasen um 20%, Wüste um 30%. Zusammen mit dem relativ geringen Flächenanteil, den PV-Module benötigen, ist der Albedo-Effekt marginal. Hinzu kommt, dass PV-Strom, der Strom aus Verbrennungskraftwerken ersetzt, die Freisetzung von CO₂ reduziert und damit den Treibhauseffekt wirksam bremst.

17. Ersetzen PV-Anlagen fossile und nukleare Kraftwerke?

Auf der anderen Seite kollidieren PV- und Windstrom zunehmend mit trägen konventionellen Kraftwerken (Kernkraft, alte Braunkohle). Diese – fast ausschließlich grundlastfähigen – Kraftwerke müssen deshalb möglichst schnell durch flexible Kraftwerke ersetzt werden, bevorzugt in multifunktionaler, stromgeführter KWK-Technologie mit thermischem Speicher (Abschnitt 18.3.7).
18. Können wir einen wesentlichen Teil unseres Energiebedarfs durch PV-Strom decken?

Ja, in dem Maße, wie wir unser Energiesystem und die energiewirtschaftlichen Strukturen an die Anforderungen der Energiewende anpassen.

18.1 Ausgangspunkt: Energiebedarf und Energieangebot

Abbildung 38: Energieflussbild 2016 für Deutschland, Angaben in Petajoule [AGEB2]
Abbildung 39: Importquoten für fossile und nuklare Primärenergieträger (www.umweltbundesamt.de)

Abbildung 40: Entwicklung der Kosten für die Bereitstellung der Primärenergie in Deutschland [ÖKO3]

Die meiste Endenergie (39%) dient der Gewinnung mechanischer Energie („Kraft“) für den Verkehr und in stationären Motoren (Abbildung 41). Für Raumwärme und Warmwasser werden jährlich ca. 800 TWh Endenergie aufgewendet [BMWi1].

Der gesamte Strombedarf und der Energiebedarf für die Warmwasserbereitung sinken im Sommer nur leicht. Der Mineralölabsatz (Otto- und Dieselkraftstoff) zeigt sehr geringe saisonale Schwankungen [MWV]. Der Heizwärmebedarf korreliert negativ mit der Globalstrahlung, bei höchster Koinzidenz im Frühjahr.
18.2 Energieszenarien

Abbildung 42: Szenario eines deutschen Energiesystems, schematische Darstellung der Struktur. [ISE5]

Abbildung 43 zeigt eine schematische Residuallastkurve für Deutschland mit einer 100%ig erneuerbaren Stromversorgung. Dargestellt sind die absteigend geordneten Stundenwerte der Residuallast für ein Jahr. Die Residuallast entspricht der Differenz aus der Stromlast und der Stromproduktion aus volatilen erneuerbaren Quellen (PV, Wind, Laufwasser). Volatile Stromproduktion lässt sich zwar technisch jederzeit abregeln, jedoch zum Preis eines wirtschaftlichen Totalverlusts der entsprechenden Strommenge.
Ein Strompreis mit sinnvoller Steuerfunktion würde in der Darstellung der Abbildung 43 tendenziell von links nach rechts fallen.

Abbildung 43: Schematische Darstellung einer Residuallastkurve für Deutschland bei Stromversorgung mit 100% EE, mit Erzeugern (+) und Lasten (-)

Damit wärmeerzeugende Wandler auf beiden Seiten der Kurve stromgeführt betrieben werden können, benötigen sie ortsnah thermische Speicher und Wärmeverbraucher bzw. Anschluss an Wärmeverteilnetze (Abschnitt 18.3.7). Für die beidseitigen Ausläufer der Residuallastkurve werden Generatoren (bspw. einfache Gasturbinen) und Abnehmer (bspw. Widerstandsheizungen) mit besonders geringen leistungsbezogenen Investitions-
und Vorhaltekosten (€/W) benötigt. Da selten in Betrieb, müssen sie keine hohe Effizienz aufweisen.

Der elektrolytisch erzeugte Wasserstoff kann direkt oder nach Methanisierung in Drucktanks oder im Gasnetz gespeichert werden. Von dort erfolgt eine Rückverstromung (Gasturbine, Gasmotor, GuD, mobile/stationäre Brennstoffzelle), eine Weiterverarbeitung zu synthetischen Kraftstoffen (bspw. Methanol) oder eine stoffliche Nutzung in der chemischen Industrie.

Die International Energy Agency (IEA) versucht seit vielen Jahren, den weltweiten Ausbau der PV zu prognostizieren (bunte Kurven in Abbildung 45) und unterschätzt dabei die tatsächliche Entwicklung (schwarze Kurve) zuverlässig.
18.3 Transformationsschritte

Für eine massive, technologisch und ökonomisch beherrschbare Integration von volatilmem PV-Strom in unser Energiesystem gibt es keine singuläre Patentlösung, dafür aber eine Vielzahl von sich ergänzenden Maßnahmen. In den folgenden Abschnitten werden die wichtigsten Schritte angesprochen.

18.3.1 Verstetigung der PV-Stromerzeugung

Abbildung 46: Stromertragsprofile von PV-Anlagen in verschiedenen Montagevarianten, berechnet mit der Software PVsol für einen überwiegend klaren Julitag am Standort Freiburg

Die sehr ausgeprägte saisonale Fluktuation der PV-Stromerzeugung lässt sich geringfügig dampfen, indem südorientierte Module mit höheren Neigungswinkeln montiert werden (Abbildung 47). Dadurch steigt der Stromertrag im Winterhalbjahr geringfügig
an, allerdings auf Kosten größerer Einbußen im Sommer und beim Gesamtertrag (im Rechenbeispiel -6%).

Abbildung 47: Rechenbeispiel für den spezifischen Monatsertrag einer PV-Anlage am Standort Freiburg für südorientierte Module mit 30° Neigung (max. Jahresertrag) und 60° Neigung

18.3.2 Komplementärbetrieb von thermischen Kraftwerken

Gaskraftwerke verbrennen heute Erdgas und Biogas. Erdgas muss überwiegend importiert werden (ca. 95% im Jahr 2017 [AGEB6]), insbesondere liefern Russland und Norwegen nach Deutschland. Im Zug der Energiewende werden Gaskraftwerke von Erdgas auf Mischgase mit steigenden Anteilen elektrolytisch erzeugten Wasserstoffs umsteigen.

Abbildung 48: Verfügbarkeit von Kraftwerken [VGB]

18.3.3 Erhöhung der Energieeffizienz

18.3.4 Lastmanagement

Grundvoraussetzung sind variable Stromtarife und Stromzähler, die eine zeitabhängige Abrechnung ermöglichen. Der Eigenverbrauch von Solarstrom aus neueren PV-Systemen hat eine analoge Wirkung, weil er den Strompreis bei direktem Bezug vom eigenen Dach deutlich reduziert.

Abbildung 49: Stromverbrauch eines durchschnittlichen Haushalts ohne Warmwasseraufbereitung [RWE]

Auch in der stromintensiven Industrie gibt es Potentiale zur Anpassung von Verbrauchsprofilen. Sie werden allerdings erst aktiviert, wenn sehr preiswerter Tagesstrom häufiger zur Verfügung steht, wenn also die installierte PV-Leistung weiter zunimmt. Oft sind
Investitionen notwendig, um die Kapazität stromintensiver Prozessschritte auszubauen, bei sinkender Auslastung, und um Lagerkapazitäten für stromintensive Produkte zu erhöhen. Die elektrische Wärmeerzeugung in Verbindung mit thermischen Speichern bietet erhebliche Potentiale für das Lastmanagement (Abschnitt 18.3.7), ebenso die Elektromobilität (Abschnitt 18.3.8).

18.3.5 Ausgewogener Zubau von PV- und Windkraftkapazitäten

Witterungsbedingt zeigt sich in Deutschland eine negative Korrelation zwischen stündlichen bis hin zu monatlichen Erzeugungsmengen von PV- und Windstrom. Wenn es gelingt, die installierten Leistungen für PV und Windstrom in der gleichen Größenordnung zu halten, reduziert ihre Kombination den Ausgleichsbedarf.

Auf Stundenbasis überschreitet die Summe der tatsächlichen Stromproduktion aus PV und Wind nur sehr selten 50% der summierten Nennleistungen. Wenn man die im Jahr 2017 installierte PV- und Windkraftleistung mit ihrer stündlichen Stromproduktion in einem Gedankenexperiment auf je 200 GW hochskaliert, dann ergibt sich die Erzeugungskurve aus Abbildung 50.

Abbildung 50: Fiktive Jahresstromproduktion (8760 Stunden) für 200 GW PV und 200 GW Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017

Bei Dunkelheit und Flaute liegt die Produktion nahe 0. Die Energiemenge oberhalb 200 GW liegt unter 1 Promille, oberhalb 150 GW unter 1%. Sieht man von diesen Sturmspitzen ab und nimmt man einen dauerhaften Stromverbrauch von mindestens 50 GW an, so bleibt eine Bandbreite von ca. 100 GW, für deren Integration technische Lösungen benötigt werden.

Auf Monatsbasis verläuft die Summe der Stromproduktion aus PV und Landwind über das Jahr gleichmäßig stärker als die Produktion der beiden Sparten für sich allein (Abbildung 27).
18.3.6 Netzausbau

18.3.6.1 Nationaler Netzausbau

18.3.6.2 Stärkung des europäischen Verbundnetzes

Norwegen verfügt über ca. 30 GW an Wasserkraftwerken [Prog] mit weiterem Ausbaupotential. Bis zum Jahr 2018 wird ein Unterseekabel von 600 km Länge mit einer Übertragungsleistung von 1,4 GW verlegt, das eine direkte Verbindung zum deutschen Stromnetz herstellt. Die Schweiz und Österreich verfügen über ca. 12 bzw. 9 GW Wasserkraftwerken.

Abbildung 51: Gesamtleistung von Wasserkraftwerken in ausgesuchten Ländern, Stand 2010 [Prog]; die Zuordnung der Kapazitäten zu den einzelnen Kraftwerkstypen unterscheidet sich je nach Datenquelle.
18.3.7 Strom-Wärme-Kopplung

Hochtemperaturwärme für Industrieprozesse kann bei Strombedarf aus der Abwärme von KWK-Gasturbinen (bis ca. 550°C) oder aus Hochtemperatur-Wärmespeichern (Abschnitt 18.3.9.2), bei Stromüberschuss mit Widerstandsheizungen gewonnen werden. Die Effizienz einer Wärmepumpe (Strom zu Wärme) wird als Jahresarbeitszahl (JAZ) angegeben und liegt abhängig von Technologie und Last um 300%. Heizstäbe wandeln Strom mit 100% Wirkungsgrad in Wärme, aber im Fall von Niedertemperaturwärme mit einem niedrigen exergetischen Wirkungsgrad. Heizstäbe lohnen sich in Zeiten sehr niedriger Strompreise.

18.3.8 Elektromobilität

Elektrische Fahrzeugantriebe nutzen hocheffiziente Motoren (Wirkungsgrad > 90%), und können Bremsenergie zu einem großen Teil zurückgewinnen (Rekuperation). Elekt-
Fakten zur PV.docx 29.05.19 66 (93)

rofahrzeuge nutzen Batterien als elektro-chemische Energiespeicher (Batterieelektrisches Fahrzeug, BEV), in Hybridfahrzeugen unterstützt durch einen Verbrennungsmotor mit Kraftstofftank (Plug-in-Hybrid Elektrisches Fahrzeug, PHEV) oder eine Brennstoffzelle mit Wasserstofftank (Brennstoffzellenfahrzeug).

Plug-In-Hybrid Elektrofahrzeuge können rein elektrisch mit einer Akkuladung bis ca. 80 km zurücklegen. Reine Elektrofahrzeuge bieten Normreichweiten (NEFZ) bis zu 380 km mit 40 kWh Speicher und bis zu 520 km mit 60 kWh Speicher. Rechnerisch entspricht die Gesamtfahrleistung aller in Deutschland zugelassenen PKW im Jahr 2017 von 630 Mrd. km [KBA] einem Jahresstromverbrauch durch E-Fahrzeuge in der Größenordnung von 70 TWh. Die Anzahl von 46 Mio. PKW [KBA] entspricht einer Gesamtspeicherkapazität in der Größenordnung von 1,8 TWh, bei 40 kWh Batteriespeicher pro Fahrzeug.

18.3.9 Energiespeicherung

18.3.9.1 Niedertemperatur-Wärmespeicher

trag von Nutzwärme aus dem Sommer- in das Winterhalbjahr mit seinem sehr viel höheren Wärmebedarf.

18.3.9.2 Hochtemperatur-Wärmespeicher

18.3.9.3 Batterien

Mit kleinen, stationären Akkus im Haus lässt sich der Eigenverbrauch von PV-Strom in die Abendstunden ausdehnen und damit massiv erhöhen (typischerweise verdoppeln, s. Abbildung 52). Im August 2018 wurde in Deutschland die Zahl von 100.000 PV-Speichern überschritten.

Abbildung 52: Eigenverbrauchsanteil in Abhängigkeit von Batteriekapazität und Leistung des Solargenerators für einen Einfamilienhaushalt mit einem Jahresstromverbrauch von 4.700 kWh. [Quasch]

In Pilotvorhaben wird derzeit auch die Speicherung von elektrischer Energie in großen, stationären Batterien untersucht [RWE2].

Abbildung 53: Gegenüberstellung der konventionellen und der netzdienlichen Betriebsführung [ISE7]

E-Fahrzeuge sind als teilflexible Stromverbraucher nicht nur für das Lastmanagement prädestiniert (Abschnitt 18.3.8), sie werden als Träger von Batteriespeichern auch bidirektional agieren [ENER]. E-Fahrzeuge, die gerade mit dem Netz verbunden sind und die volle Reichweite nicht durchgängig als Fahrzeugschaft vorhalten müssen, können bei entsprechender technischer Ausrüstung als Strom-Strom-Speicher betrieben werden. Bei zehn Millionen Fahrzeugen am Netz mit je 20 kWh disponierbarer Kapazität (bei 40 – 60 kWh Gesamtkapazität pro Fahrzeug) kommt eine Batteriekapazität von 200 GWh zusammen. Private KFZ parken im Schnitt ca. 23 h pro Tag, allein schon die begrenzte Kapazität von Verkehrswegen zwingt die meisten Autos über die meiste Zeit in den Stand. Mit dem Netz verbundene E-Fahrzeuge können über ihre Batterien auch im Stand einen wirtschaftlichen Nutzen entfalten, anders als ihre Vorgänger mit Verbrennungsmotor.

18.3.9.4 Pumpspeicher

Die aktuell installierte Pumpspeicher-Kapazität im deutschen Stromnetz liegt bei knapp 38 GWh, die Nennleistung bei ca. 6,4 GW, der durchschnittliche Wirkungsgrad um 70%, ohne elektrische Zu-und Ableitungsverluste. Zum Größenvergleich: die genannte Speicherkapazität entspricht rechnerisch dem Ertrag des deutschen PV-Kraftwerksparks aus weniger als einer Betriebsstunde unter Volllast. Wenn einige Projekte realisiert wer-
den, die in Planung sind oder waren, kann die Leistung der Pumpspeicherkraftwerke auf ca. 10 GW erhöht werden. Die aktuellen Markt- und Preismechanismen erlauben allerdings keinen wirtschaftlichen Betrieb neuer Kraftwerke, obwohl diese für eine effiziente Energiewende dringend gebraucht werden. Die mechanische Speicherung von elektrischer Energie in Druckluft-Speichern (adiabatic compressed air energy storage, CAES) wird ebenfalls untersucht.

18.3.9.5 Wasserstoff und Derivate

18.3.10 Übersicht

Abbildung 54 zeigt mögliche Pfade für die Wandlung und Speicherung von PV-Strom. Für die praktische Relevanz dieser Pfade sind neben dem technischen Wirkungsgrad auch die Kosten der Nennleistung (€/W) bei Transformation und die Kosten der gespeicherten Energie (€/kWh) bei Speichern zu betrachten.

Im Sektor „Wärme“ (rot) beladen Blockheizkraftwerke, Wärmepumpen und – bei Angebotsspitzen auf der Stromseite – Heizstäbe die Wärmespeicher Stromgeführt. Wo es die Abnahmedichte zulässt, bspw. in Quartieren, erfolgt die effiziente Speicherung zentral in großen Wärmespeichern.
Abbildung 55: Vereinfachte schematische Darstellung eines Erneuerbaren Energiesystems mit den wichtigsten stromnetzgebundenen Bausteinen der Kategorien Gewinnung, Wandlung, Speicherung und Verbrauch

Im Sektor „Batterie“ (schwarz) werden stationäre, zentrale oder dezentrale elektrochemische Speicher je nach Residuallast be- oder entladen. Mobile Batterien in Elektrofahrzeugen bedienen primär den Mobilitätsbedarf, können aber im Stillstand zusätzlich das Netz bidirektional stützen. Bei den meisten elektrochemischen Speichern sind Wandler und Speicher baulich verschmolzen, nur sogenannte Redox-Flow-Batterien verfügen über externe, frei skalierbare Speichertanks.

Im mechanischen Sektor (blau) werden Wasserspeicher-Kraftwerke über Pumpen und Turbinen bidirektional betrieben, analog Druckluftspeicher-Kraftwerke über Kompressoren und Turbinen.
Zeithorizont bis 2025: Schwerpunkt „Flexibilisierung“
1. Die Energieeffizienz von Stromverbrauchern wird in allen Sektoren gesteigert.
2. Die installierte PV-Leistung wird auf 70-80 GW ausgebaut, verbrauchsnah, zur Verstetigung der Produktion auch in Ost/West-Ausrichtung oder mit Nachführung, mit netzstützenden Wechselrichterfunktionen, für eine Produktion von ca. 60-70 TWh/a Solarstrom bei Spitzenleistungen bis ca. 50-55 GW. Windenergiekapazitäten werden in ähnlichem Volumen ausgebaut.
4. Thermische Speicher, Nah- und Fernwärmenetze werden ausgebaut.
5. PV-Anlagen und Elektro-Fahrzeuge werden mit netzdienlichen Batteriespeichern versehen.
6. Pumpspeicherleistung und -kapazität werden ausgebaut.
7. Für die Abnahme von gelegentlichen EE-Stromspitzen werden preiswerte (€/W) Heizstäbe in thermische Speicher eingebaut
8. Für die Abnahme von häufigen EE-Stromüberschüssen werden elektrische Wärmepumpen mit Einspeisung in thermische Speicher aufgebaut
10. Für die Deckung von häufigen Residuallast-Lücken werden effiziente GuD/KWK Kraftwerke mit Einspeisung in thermische Speicher aufgebaut
11. Vorhandene Kohlekraftwerke werden nach Möglichkeit für flexiblen Betrieb optimiert, sonst stillgelegt.
12. Die Stromnetzverbindungen zu unseren Nachbarländern werden verstärkt.

Zeithorizont bis 2050: Schwerpunkt „Speicherung“
1. die installierte PV-Leistung wird schrittweise auf ca. 200 GW ausgebaut, für eine Solarstrom-Produktion von ca. 190 TWh/a
2. die Wärmeversorgung wird vollständig auf EE umgestellt, der bauliche Wärmeschutz optimiert
3. der Verkehr wird vollständig auf Strom bzw. synthetische Kraftstoffe aus erneuerbaren Quellen umgestellt
4. die Wandlung und Speicherung von EE (insbesondere Strom-zu-Strom) über EE-Gas und Batterien wird massiv ausgebaut
5. der Verbrauch an fossilen Brennstoffen wird vollständig eingestellt

Um teure Fehlentwicklungen zu vermeiden und um die genannten Schritte nicht in Zeitlupe zu gehen, sind Anreize notwendig, ein stabiles EEG, Investitionsanreize für Energieeffizienzmaßnahmen, für multifunktionale Kraftwerke und Pumpspeicher, Preis- und Investitionsanreize für angebotsorientierten Stromverbrauch, Vergütungsanreize für nachfrageorientierte Stromeinspeisung und die Kürzung der impliziten Subvention für
Kohlekraftwerke durch eine Verknappung der CO₂-Zertifikate oder – national umsetzbar - durch eine CO₂-Steuer.

18.4 *Muss die Energiewende auf die Bundespolitik warten?*

Nein, auch wenn die Bundespolitik es allen leichter machen kann. Der Bundestag bestimmt als Gesetzgeber den Rahmen für die Energiewende. Daneben gibt es eine Reihe wichtiger Akteure, die in ihren Handlungsfeldern viel bewegen können, auch unabhängig vom regulativen Rahmen. Ein Handeln dieser Akteure sendet zudem deutliche Signale in die Politik.

19. Brauchen wir eine PV-Produktion in Deutschland?

Eine PV-Produktion in Deutschland bietet langfristige Versorgungssicherheit bei hohen Öko- und Qualitätsstandards.

20. Braucht es ein Erneuerbare-Energien-Gesetz (EEG)?

Ja, wobei die Energiewende als Ganzes in den Fokus rücken muss. Mit Erreichen des 52-MW-Deckels ist eine Förderung neuer PV-Installationen nach dem derzeit gültigen EEG nicht mehr vorgesehen. Die aktuellen Marktmechanismen würden ohne Flankierung durch das EEG oder einen Nachfolger zu wenig Anreize für langfristige Investitionen in die Energiewende liefern.

Ein wesentlicher Grund ist die sektoriell lückenhafte, mit dem Börsengeschehen schwankende und in der Summe viel zu geringe Bepreisung von CO₂-Emissionen. Eine sozial kompensierte, **nationale CO₂ Abgabe**, wie sie bspw. in Schweden (seit 1991), in der Schweiz 2008 („Lenkungsabgabe“), in Frankreich (Steuer außerhalb des EU-ETS) und in Großbritannien („Carbon Price Floor“) eingeführt wurde, kann diese Schwachstellen überbrücken.

wird, konkurriert mit PV-Kraftwerken späterer Baujahre, die Solarstrom immer zur glei-
chen Zeit bei voraussichtlich weiter gesunkenen Stromgestehungskosten liefern werden
(Deflationseffekt).

21. Enthalten PV-Module giftige Substanzen?

Das hängt von Technologie und Materialwahl ab.

21.1 Waferbasierte Module

Module auf Basis von Siliciumwafern (über 90% Marktanteil) enthalten häufig noch Blei
in der Zellmetallisierung (ca. 2 g Blei pro 60-Zellen-Modul) und in den eingesetzten Lot-
ten (ca. 10 g Blei). Blei, ein giftiges Schwermetall, ist in bestimmten, stark sauren oder
basischen Umgebungen löslich, und die Lamination im Modul unterbindet Stofftransport
nicht dauerhaft [IPV]. In waferbasierten Modulen lässt sich Blei durch unbedenkliche
Materialien bei geringen Mehrkosten vollständig substituieren. Einige Modulhersteller
setzen Rückseitenfolien ein, die Fluoropolymere enthalten, bspw. Polyvinylfluorid.

21.2 Dünnschicht-Module

Dünnschicht-Module auf CdTe-Basis (ca. 5% Marktanteil) enthalten Cadmium in Salz-
form, es lässt sich bei dieser Technologie nicht substituieren. Das metallische Cadmium
sowie Cadmiumoxid werden als sehr giftig eingestuft, CdTe als gesundheitsschädlich. Es
gibt alternative Dünnschicht-Technologien auf Basis von amorphem Silicium oder Kup-
fer-Indium-Selenid (CIS), die kein oder sehr wenig Cd enthalten.

CIS-Solarzellen enthalten Selen, welches v.a. als Oxid (z.B. nach Bränden) toxisch wirken
kann, abhängig von der aufgenommenen Menge. Manche Hersteller erklären die Kon-
formität ihrer CIS-Solarmodule mit der RoHS-Richtlinie (Restriction of certain Hazardous
Substances) sowie der EU-Chemikalienverordnung REACH (Registration, Evaluation, Au-
thorisation and Restriction of Chemicals). Für eine differenzierte Bewertung wird auf
unabhängige Untersuchungen des jeweiligen Modultyps verwiesen.

21.3 Solarglas

Alle gängigen Solarmodule benötigen ein Glas als Frontscheibe, das im relevanten
Spektralbereich zwischen 380 – 1100 nm eine sehr geringe Absorption aufweist (Solarg-
lasqualität). Manche Glashersteller erhöhen die Lichttransmission durch Beigabe von
Antimon (Sb) zur Glasschmelze. Wenn dieses Glas auf Deponien entsorgt wird, kann
Antimon ins Grundwasser gelangen. Studien deuten darauf hin, dass Antimonverbin-
dungen ähnlich wirken wie entsprechende Arsenverbindungen.
21.4 Rücknahme und Recycling

22. Sind Rohstoffe zur PV-Produktion ausreichend verfügbar?

22.1 Waferbasierte Module

22.2 Dünnschicht-Module

23. Erhöhen PV-Anlagen das Brandrisiko?

23.1 Können defekte PV-Anlagen einen Brand auslösen?

In einigen Fällen – bei derzeit ca. 1,4 Mio. PV-Anlagen in Deutschland - hat das Zusammentreffen dieser Faktoren nachweislich zu einem Brand geführt. Ausgangspunkt der Brände waren meistens Fehler bei Verkabelung und Anschlüssen.

„Die Einhaltung der bestehenden Regeln durch qualifizierte Fachkräfte ist der beste Brandschutz. 0,006 Prozent der Photovoltaikanlagen verursachten bisher einen Brand mit größerem Schaden. In den letzten 20 Jahren gab es 350 Brände, an denen die Solaranlage beteiligt war, bei 120 war sie Auslöser des Brandes. In 75 Fällen war der Schaden größer, in 10 dieser Fälle brannte ein Gebäude ab.

Neben technischen Verbesserungen sind deshalb auch Vorschriften zur Kontrolle wichtig. So kann derzeit der Installateur einer Anlage sich selbst die ordnungsgemäße Ausführung bestätigen. Eine Empfehlung der Experten ist daher, die Abnahme durch einen unabhängigen Dritten vorzuschreiben. In der Diskussion ist auch, für private Photovoltaikanlagen eine wiederkehrende Sicherheitsprüfung vorzuschreiben, wie sie für gewerbliche Anlagen alle vier Jahre Pflicht ist.“ [ISE6]
23.2 Gefährden PV-Anlagen die Feuerwehrleute?

23.3 Behindern PV-Module den direkten Löschangriff über das Dach?
Ja. Die durch die PV-Module hergestellte zweite „Dachhaut“ behindert den Löscherfolg, weil das Wasser schlicht abläuft. Aus Feuerwehersicht ist ein derartig durch Feuer beaufschlagtes Objekt jedoch meistens nicht mehr zu retten, d.h. der Schaden ist bereits weitgehend vorhanden und irreversibel, noch bevor die PV-Anlage die Löschtätigkeit behindert.

23.4 Entstehen beim Brand von PV-Modulen giftige Immissionen?
24. Anhang: Fachbegriffe

24.1 EEG-Umlage

„Die Betreiber der Stromnetze, die die Anlagen entsprechend an ihr Netz anzuschließen und die Einspeisung zu vergüten haben, leiten den Strom an ihre zuständigen Übertragungsnetzbetreiber weiter und erhalten im Gegenzug von diesen die gezahlte Vergütung erstattet (zweite Stufe). Die Erneuerbare Energie wird zwischen den in Deutschland agierenden vier großen Übertragungsnetzbetreibern in der dritten Stufe anteilig ausgeglichen, so dass regionale Unterschiede in der Erzeugung von Erneuerbarer Energie kompensiert werden.

Diese Kosten berechnen sich durch die Differenz zwischen dem Ertrag, den der Strom aus Erneuerbaren Energien am Markt (Strombörse) einbringt, und den Vergütungssätzen, die anfänglich den Anlagenbetreibern gezahlt wurden. (...)“ [Bundestag]

Die Differenz zwischen Vergütung und dem jeweiligen Preis an der Strombörse entspricht der EEG-Förderung. Die Förderung wird auf den gesamten Stromverbrauch umgelegt – die so genannte EEG-Umlage. Die Energieversorgungsunternehmen reichen die EEG-Umlage damit an die Stromverbraucher weiter. „Durch die Ausgleichsmechanis-
musverordnung (AusglMechV) sind die Übertragungsnetzbetreiber dazu verpflichtet, diese EEG-Umlage zum 15. Oktober für das jeweilige Folgejahr festzulegen. Die Berechnung unterliegt der Überwachung durch die Bundesnetzagentur. (...) Für energieintensive Unternehmen ist die EEG-Umlage auf 0,05 Ct/kWh begrenzt.“ [Bundestag]. Energieintensive Industriebetriebe mit einem hohen Stromkostenanteil sind damit weitgehend von der EEG-Umlage befreit.

24.2 Modulwirkungsgrad

Wenn nicht anders angegeben, bezeichnet der Modulwirkungsgrad einen Nennwirkungsgrad. Er wird unter genormten Bedingungen („STC“, standard test conditions) bestimmt als Verhältnis von abgegebener elektrischer Leistung zur eingestrahlten Leistung auf die Modulgesamtfläche. Die Normbedingungen sehen insbesondere eine Modultemperatur von 25° C, senkrechte Einstrahlung mit 1000 W/m² und ein bestimmtes Einstrahlungsspektrum vor. Im realen Betrieb weichen die Bedingungen davon meistens deutlich ab, so dass der Wirkungsgrad variiert.

24.3 Nennleistung eines PV-Kraftwerks

Die Nennleistung eines Kraftwerks ist die idealisierte DC-Leistung des Modulfeldes unter STC-Bedingungen, d.h. das Produkt aus Generatorfläche, Normeinstrahlung (1000 W/m²) und Nennwirkungsgrad der Module.

24.4 Spezifischer Ertrag

24.5 Systemwirkungsgrad

Der Systemwirkungsgrad einer PV-Anlage ist das Verhältnis von Nutzertrag (Wechselstromertrag) und Einstrahlungssumme auf die Generatorfläche. Der nominelle Modulwirkungsgrad geht in den Systemwirkungsgrad ein.

24.6 Performance Ratio

Zum Effizienzvergleich netzgekoppelter PV-Anlagen an verschiedenen Standorten und mit verschiedenen Modultypen wird häufig der Performance Ratio verwendet. Unter "Performance Ratio" versteht man das Verhältnis von Nutzertrag (Wechselstromertrag) und idealisiertem Ertrag (Produkt aus Einstrahlungssumme auf die Generatorfläche und nominellem Modulwirkungsgrad) einer Anlage. Neue, sorgfältig geplante Anlagen erreichen PR-Jahreswerte zwischen 80 und 90%.

24.7 Grundlast, Mittellast, Spitzenlast, Netzlast und Residuallast

„Der Leistungsbedarf schwankt je nach Tageszeit. In der Regel treten Maxima am Tage auf und das Minimum nachts zwischen 0 und 6 Uhr. Der Verlauf des Leistungsbedarfs wird als Lastkurve bzw. Lastverlauf beschrieben. In der klassischen Energietechnik wird die Lastkurve in drei Bereiche unterteilt:
(i) die Grundlast
(ii) die Mittellast
(iii) die Spitzenlast

(…) Die Netzlast (ist) der Leistungswert des Strombedarfs, der aus dem Netz entnommen wird. Die residuale Last ergibt sich aus der Netzlast abzüglich der Einspeisung aus erneuerbaren Energien" [ISET1]
24.8 Brutto- und Netto-Stromverbrauch

25. Anhang: Umrechnungstabellen [EEBW]

Vorsätze und Vorzeichen

<table>
<thead>
<tr>
<th>k</th>
<th>Kilo 10^3</th>
<th>Tausend</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Mega 10^6</td>
<td>Million (Mio.)</td>
</tr>
<tr>
<td>G</td>
<td>Giga 10^9</td>
<td>Milliarde (Mrd.)</td>
</tr>
<tr>
<td>T</td>
<td>Tera 10^12</td>
<td>Billion (Bll.)</td>
</tr>
<tr>
<td>P</td>
<td>Peta 10^15</td>
<td>Billione (Brd.)</td>
</tr>
</tbody>
</table>

Umrechnungen

<table>
<thead>
<tr>
<th></th>
<th>PJ</th>
<th>GWh</th>
<th>Mio. t SKE</th>
<th>Mio. t RÖE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PJ</td>
<td>Petajule</td>
<td>1</td>
<td>277,78</td>
<td>0,034</td>
</tr>
<tr>
<td>1 GWh</td>
<td>Gigawattstunde</td>
<td>0,0036</td>
<td>1</td>
<td>0,00012</td>
</tr>
<tr>
<td>1 Mio. t SKE</td>
<td>Tonne Steinkohle-Einheit</td>
<td>29,31</td>
<td>8,141</td>
<td>1</td>
</tr>
<tr>
<td>1 Mio. t RÖE</td>
<td>Tonne Röchen-Einheit</td>
<td>41,87</td>
<td>11,630</td>
<td>1,43</td>
</tr>
</tbody>
</table>

Typische Eigenschaften von Kraftstoffen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiesel</td>
<td>0,88</td>
<td>10,3</td>
<td>9,1</td>
<td>37,1</td>
<td>32,8</td>
</tr>
<tr>
<td>Bioethanol</td>
<td>0,79</td>
<td>7,4</td>
<td>5,9</td>
<td>26,7</td>
<td>21,1</td>
</tr>
<tr>
<td>Rapsöl</td>
<td>0,92</td>
<td>10,4</td>
<td>0,6</td>
<td>37,6</td>
<td>34,8</td>
</tr>
<tr>
<td>Diesel</td>
<td>0,84</td>
<td>12,0</td>
<td>10,0</td>
<td>43,1</td>
<td>35,9</td>
</tr>
<tr>
<td>Benzin</td>
<td>0,76</td>
<td>12,2</td>
<td>9,0</td>
<td>43,9</td>
<td>32,5</td>
</tr>
</tbody>
</table>

Typische Eigenschaften von festen und gasförmigen Energieträgern

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinkohle</td>
<td>-</td>
<td>8,3 - 10,6</td>
<td>-</td>
<td>30,0 - 38,1</td>
<td>-</td>
</tr>
<tr>
<td>Braunkohle</td>
<td>-</td>
<td>28 - 62</td>
<td>-</td>
<td>0,2 - 22,2</td>
<td>-</td>
</tr>
<tr>
<td>Erdgas H (in m³)</td>
<td>0,76</td>
<td>11,6</td>
<td>8,8</td>
<td>41,7</td>
<td>31,7</td>
</tr>
<tr>
<td>Heizöl EL</td>
<td>0,86</td>
<td>11,9</td>
<td>10,2</td>
<td>42,8</td>
<td>36,8</td>
</tr>
<tr>
<td>Biogas (in m³)</td>
<td>1,20</td>
<td>42 - 6,3</td>
<td>5,0 - 7,5</td>
<td>15,0 - 22,5</td>
<td>18,0 - 27,0</td>
</tr>
<tr>
<td>Holzpellets</td>
<td>0,65</td>
<td>4,9 - 5,4</td>
<td>3,2 - 3,5</td>
<td>17,5 - 19,5</td>
<td>11,4 - 12,7</td>
</tr>
</tbody>
</table>
26. Anhang: Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHKW</td>
<td>Blockheizkraftwerk, Anlage zur Gewinnung elektrischer Energie und Wärme über Verbrennungsmotor oder Gasturbine</td>
</tr>
<tr>
<td>BMU</td>
<td>Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit</td>
</tr>
<tr>
<td>BSW</td>
<td>Bundesverband Solarwirtschaft e.V.</td>
</tr>
<tr>
<td>CCS</td>
<td>Carbon Dioxide Capture and Storage, Abscheidung von CO₂ aus Kraftwerksmissionen und anschließende Speicherung in geologischen Strukturen</td>
</tr>
<tr>
<td>EE</td>
<td>Erneuerbare Energien</td>
</tr>
<tr>
<td>EEG</td>
<td>Gesetz für den Vorrang Erneuerbarer Energien, (Erneuerbare-Energien-Gesetz - EEG)</td>
</tr>
<tr>
<td>EVU</td>
<td>Energieversorgungsunternehmen</td>
</tr>
<tr>
<td>GuD</td>
<td>Gas-und-Dampf-Kombikraftwerk</td>
</tr>
<tr>
<td>IEA</td>
<td>Internationale Energie Agentur</td>
</tr>
<tr>
<td>IKT</td>
<td>Informations- und Kommunikationstechnik</td>
</tr>
<tr>
<td>KWK</td>
<td>Kraft-Wärme-Kopplung, das Prinzip der simultanen Gewinnung von mechanischer Energie (schlussendlich als elektrische Energie) und nutzbare Wärme</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaik</td>
</tr>
<tr>
<td>(W_{p})</td>
<td>Watt „peak“, Nennleistung eines PV-Moduls oder eines Modulfeldes</td>
</tr>
</tbody>
</table>
27. Anhang: Quellen

<table>
<thead>
<tr>
<th>ACA</th>
<th>Sektorkopplung – Optionen für die nächste Phase der Energiewende, acatech – Deutsche Akademie der Technikwissenschaften e. V. (Federführung), November 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEE1</td>
<td>Metaanalyse: Digitalisierung der Energiewende, Agentur für Erneuerbare Energien, August 2018</td>
</tr>
<tr>
<td>AGEB1</td>
<td>Energieverbrauch in Deutschland - Daten für das 1.-3. Quartal 2011, Arbeitsgemeinschaft Energiebilanzen e.V., November 2011</td>
</tr>
<tr>
<td>AGEB2</td>
<td>Energieflussbild 2016 für die Bundesrepublik Deutschland in Petajoule, AGEB, Mai 2018</td>
</tr>
<tr>
<td>AGEB6</td>
<td>Energieverbrauch in Deutschland im Jahr 2017, AGEB, Februar 2018</td>
</tr>
<tr>
<td>AGEE</td>
<td>Monatsbericht zur Entwicklung der erneuerbaren Stromerzeugung und Leistung in Deutschland, Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat), Februar 2019</td>
</tr>
<tr>
<td>AGORA</td>
<td>Stromnetze für 65 Prozent Erneuerbare bis 2030. Zwölf Maßnahmen für den synchronen Ausbau von Netzen und Erneuerbaren Energien, Agora Energiewende, Juli 2018</td>
</tr>
<tr>
<td>AMP</td>
<td>Sektorkopplung: Amprion und Open Grid Europe geben Power-to-Gas in Deutschland einen Schub, Pressemeldung, Amprion, Juni 2018</td>
</tr>
<tr>
<td>ATW2</td>
<td>Holger Ludwig, Tatiana Salnikova, Ulrich Waas; Lastwechselfähigkeiten deutscher KKW, ATW 55. Jg (2010), Heft 8/9</td>
</tr>
<tr>
<td>BDEW1</td>
<td>Durchschnittliche Ausnutzungsdauer der Kraftwerke im Jahr 2007 in Stunden, Stand September 2010</td>
</tr>
<tr>
<td>BDEW2</td>
<td>Foliensatz Erneuerbare Energien EEG_2017, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., Juli 2017</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>BDEW3</td>
<td>Entwicklung des Nettostromverbrauchs in Deutschland, BDEW, Februar 2018 (https://www.bdeew.de/service/daten-und-grafiken/entwicklung-Nettostromverbrauch-deutschland/)</td>
</tr>
<tr>
<td>BDEW4</td>
<td>Redispatch in Deutschland - Auswertung der Transparenzdaten, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., 9. August 2016</td>
</tr>
<tr>
<td>BDEW6</td>
<td>BDEW-Strompreisanalyse Januar 2019 - Haushalte und Industrie, BDEW, Januar 2019</td>
</tr>
<tr>
<td>BEE</td>
<td>BEE-Szenario 2030 - 65% Erneuerbare Energien bis 2030; Ein Szenario des Bundesverbandes Erneuerbare Energie e.V. (BEE), Mai 2019</td>
</tr>
<tr>
<td>BMEL</td>
<td>Daten und Fakten, Land-, Forst- und Ernährungswirtschaft mit Fischerei und Wein- und Gartenbau, Bundesministerium für Ernährung und Landwirtschaft (BMEL), Dezember 2017</td>
</tr>
<tr>
<td>BMVI</td>
<td>Räumlich differenzierte Flächenpotentiale für erneuerbare Energien in Deutschland. BMVI (Hrsg.), BMVI-Online-Publikation 08/2015.</td>
</tr>
<tr>
<td>BMWi1</td>
<td>Gesamtausgabe der Energiedaten - Datensammlung des BMWi, letzte Aktualisierung: 04.10.2017</td>
</tr>
<tr>
<td>BMWi3</td>
<td>Forschungsförderung für die Energiewende, Bundesbericht Energieforschung 2016, Bundesministerium für Wirtschaft und Energie (BMWi)</td>
</tr>
<tr>
<td>BMWi5</td>
<td>EEG in Zahlen: Vergütung, Differenzkosten und EEG-Umlage 2000 bis 2019, Stand Oktober 2018</td>
</tr>
<tr>
<td>BMWi6</td>
<td>Bundesbericht Energieforschung 2018, Bundesministerium für Wirtschaft und Energie (BMWi), Juni 2018</td>
</tr>
<tr>
<td>BNA1</td>
<td>Bundesnetzagentur legt Eigenkapitalrenditen für Investitionen in die Strom- und Gasnetze fest, Pressemitteilung der Bundesnetzagentur vom 2. November 2011</td>
</tr>
<tr>
<td>BNA2</td>
<td>https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/erneuerbareEnergien/ZahlenDatenInformationen/EEG_Registerdaten/EEG_Registerdaten_node.html</td>
</tr>
<tr>
<td>BNA3</td>
<td>Monitoringbericht 2018, Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen, Bundeskartellamt, Stand November 2018</td>
</tr>
<tr>
<td>BNA4</td>
<td>Flächeninanspruchnahme für Freiflächenanlagen nach § 36 Freiflächenaus- schreibungsverordnung (FFAV), Bericht der Bundesnetzagentur, Dezember</td>
</tr>
<tr>
<td>Jahr</td>
<td>Quelle</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>2016</td>
<td>BSW Statistische Zahlen der deutschen Solarstrombranche (Photovoltaik), Bundesverband Solarwirtschaft e.V. (BSW-Solar), Februar 2018</td>
</tr>
<tr>
<td></td>
<td>Bundestag EEG-Umlage 2010, Deutscher Bundestag, Wissenschaftliche Dienste, Nr. 21/10, 25.03.2010</td>
</tr>
<tr>
<td></td>
<td>Bundestag Antwort der Bundesregierung auf die Kleine Anfrage der Abgeordneten Oliver Krischer, Hans-Josef Fell, Bärbel Höhn, weiterer Abgeordneter und der Fraktion BÜNDNIS 90/DIE GRÜNEN – Drucksache 17/10018 –</td>
</tr>
<tr>
<td></td>
<td>DEWI Energiewirtschaftliche Planung für die Netzintegration von Windenergie in Deutschland an Land und Offshore bis zum Jahr 2020, Studie im Auftrag der Deutschen Energie-Agentur GmbH (dena), Februar 2005</td>
</tr>
<tr>
<td></td>
<td>DLR2 M. O’Sullivan (DLR), U. Lehr (GWS), D. Edler (DIW), Bruttobeschäftigung durch erneuerbare Energien in Deutschland und verringerte fossile Brennstoffimporte durch erneuerbare Energien und Energieeffizienz, Zulieferung für den Monitoringbericht 2015, Stand: September 2015</td>
</tr>
<tr>
<td></td>
<td>DVGW Deutscher Verein des Gas- und Wasserfaches e. V., Presseinformation vom 24. April 2019</td>
</tr>
<tr>
<td></td>
<td>DWD Wolfgang Riecke, Bereitstellung von historischen Globalstrahlungsdaten für die Photovoltaik, 2. Fachtagung Energiemetereologie, April 2011</td>
</tr>
<tr>
<td></td>
<td>ECOFY S Abschätzung der Kosten für die Integration großer Mengen an Photovoltaik in die Niederspannungsnetze und Bewertung von Optimierungspotenzialen, ECOFYS, März 2012</td>
</tr>
<tr>
<td></td>
<td>EEBW Erneuerbare Energien in Baden-Württemberg 2011, Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg, November 2012</td>
</tr>
<tr>
<td></td>
<td>EEG Gesetz zur Einführung von Ausschreibungen für Strom aus erneuerbaren Energien und zu weiteren Änderungen des Rechts der erneuerbaren Energien (EEG 2017), Bundesrat Drucksache 355/16, 08.07.16</td>
</tr>
<tr>
<td></td>
<td>EEX Positionspapier der European Energy Exchange und EPEX SPOT, Februar 2014</td>
</tr>
<tr>
<td></td>
<td>EnBW EnBW verstärkt Engagement im Bereich Solarenergie, Pressemeldung, Energie Baden-Württemberg AG, Februar 2019</td>
</tr>
<tr>
<td></td>
<td>ENER E-Mobility-Zukunft: ENERVIE an Meilenstein-Projekt beteiligt, Pressemeldung, Südwestfalen Energie und Wasser AG, Oktober 2018</td>
</tr>
<tr>
<td></td>
<td>FATH Karoline Fath, Technical and economic potential for photovoltaic systems on buildings, KIT Scientific Publishing, Karlsruhe, Juli 2018</td>
</tr>
<tr>
<td></td>
<td>FÖS1 Externe Kosten der Atomenergie und Reformvorschläge zum Atomhaftungsrecht, Hintergrundpapier zur Dokumentation von Annahmen, Methoden und Ergebnissen, Forum Ökologisch-Soziale Marktwirtschaft e.V., September 2012</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Titel</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>FÖS2</td>
<td>Was Strom wirklich kostet - Vergleich der staatlichen Förderungen und gesamtgesellschaftlichen Kosten von konventionellen und erneuerbaren Energien, Studie im Auftrag von Greenpeace Energy eG und dem Bundesverband WindEnergie e.V. (BWE), Forum Ökologisch-Soziale Marktwirtschaft e.V. (FÖS), August 2012,</td>
</tr>
<tr>
<td>HTW</td>
<td>Sinnvolle Dimensionierung von Photovoltaikanlagen für Prosumer, Kurzstudie, Hochschule für Technik und Wirtschaft (HTW) Berlin, März 2019</td>
</tr>
<tr>
<td>IEA1</td>
<td>Renewables 2018 - Market analysis and forecast from 2018 to 2023, International Energy Agency (IEA), Oktober 2018</td>
</tr>
<tr>
<td>IEA3</td>
<td>Energiepolitik der IEA-Länder, Prüfung 2013, Deutschland, Zusammenfassung, International Energy Agency (IEA), April 2013</td>
</tr>
<tr>
<td>IPCC</td>
<td>Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis, Summary for Policymakers, Intergovernmental Panel on Climate Change (IPCC), WGI AR5, Sept. 2013</td>
</tr>
<tr>
<td>IPV</td>
<td>Jessica Nover, Schadstofffreisetzung aus Photovoltaik-Modulen, Abschlussbericht, Universität Stuttgart, Institut für Photovoltaik, 2018</td>
</tr>
<tr>
<td>ISE1</td>
<td>Christoph Kost, Dr. Thomas Schlegl; Stromgestehungskosten Erneuerbare Energien; Studie des Fraunhofer-Instituts für Solare Energiesysteme ISE, Dezember 2010</td>
</tr>
<tr>
<td>ISE4</td>
<td>https://www.energy-charts.de, Verantwortlicher Redakteur: Prof. Dr. Bruno Burger, Fraunhofer-Institut für Solare Energiesysteme ISE</td>
</tr>
<tr>
<td>ISE5</td>
<td>Hans-Martin Henning, Andreas Palzer; Was kostet die Energiewende? Wege zur Transformation des deutschen Energiesystems bis 2050; Studie des Fraunhofer-Instituts für Solare Energiesysteme ISE, November 2015</td>
</tr>
<tr>
<td>ISE6</td>
<td>Photovoltaik-Brandschutz – Fakten statt Phantome, Pressemeldung, Fraunhofer ISE, Februar 2013 (Näheres zum Brandschutz unter www.pv-brandsicherheit.de)</td>
</tr>
<tr>
<td>ISE7</td>
<td>Speicherstudie 2013 - Kurzgutachten zur Abschätzung und Einordnung energiewirtschaftlicher, ökonomischer und anderer Effekte bei Förderung von objektgebunden elektrochemischen Speichern, Studie des Fraunhofer-Instituts für Solare Energiesysteme ISE, Januar 2013</td>
</tr>
<tr>
<td>ISE9</td>
<td>Kurzstudie zur EEG-Umlage, Fraunhofer-Instituts für Solare Energiesysteme</td>
</tr>
<tr>
<td>Index</td>
<td>Titel</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>ISE</td>
<td>ISET1 Yves-Marie Saint-Drenan et al. „Summenganglinien für Energie 2.0“, Studie des Instituts für Solare Energieversorgungstechnik, ISET e.V., April 2009</td>
</tr>
<tr>
<td>ISET2</td>
<td>Rolle der Solarstromerzeugung in zukünftigen Energieversorgungsstrukturen - Welche Wertigkeit hat Solarstrom?, Untersuchung im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Mai 2008</td>
</tr>
<tr>
<td>IWES1</td>
<td>Vorstudie zur Integration großer Anteile Photovoltaik in die elektrische Energieversorgung, Studie im Auftrag des BSW - Bundesverband Solarwirtschaft e.V., Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), November 2011</td>
</tr>
<tr>
<td>IWES2</td>
<td>Interaktion EE-Strom, Wärme und Verkehr, Studie im Auftrag des Bundesministerium für Wirtschaft und Energie, Projektleitung Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), September 2015</td>
</tr>
<tr>
<td>KBA</td>
<td>Zahlen im Überblick – Statistik, Kraftfahrt-Bundesamt, Juni 2018</td>
</tr>
<tr>
<td>LFU1</td>
<td>Berechnung von Immissionen beim Brand einer Photovoltaik-Anlage aus Cadmiumtellurid-Modulen, Bayerisches Landesamt für Umwelt, 11-2011</td>
</tr>
<tr>
<td>LFU2</td>
<td>Beurteilung von Kunststoffbränden, Az: 1/7-1515-21294, Bayerisches Landesamt für Umwelt, 1995</td>
</tr>
<tr>
<td>MWV</td>
<td>Jahresbericht 2018, Mineralölwirtschaftsverband e.V., Juli 2018</td>
</tr>
<tr>
<td>NPE</td>
<td>Fortschrittsbericht 2018 – Markthochlaufphase, Nationale Plattform Elektromobilität, Mai 2018</td>
</tr>
<tr>
<td>ÖKO</td>
<td>EEG-Umlage und die Kosten der Stromversorgung für 2014 - Eine Analyse von Trends, Ursachen und Wechselwirkungen, Kurzstudie im Auftrag von Greenpeace, Juni 2013</td>
</tr>
<tr>
<td>ÖKO2</td>
<td>Aktueller Stand der KWK-Erzeugung (Dezember 2015), Studie des Ökoinstituts e.V. im Auftrag des Bundesministerium für Wirtschaft und Energie, Dezember 2015</td>
</tr>
<tr>
<td>ÖKO3</td>
<td>Eingesparte Kosten für Energieimporte im Jahr 2015 und die Innovationseffekte durch die Nutzung erneuerbarer Energien in Deutschland, Memo des Ökoinstituts e.V., Oktober 2016</td>
</tr>
<tr>
<td>ÖKO4</td>
<td>Beschäftigungsentwicklung in der Braunkohleindustrie: Status quo und Projektion, Öko-Institut Berlin, Juli 2018</td>
</tr>
<tr>
<td>Prog</td>
<td>Bedeutung der internationalen Wasserkraft-Speicherung für die Energiewende, Studie der Prognos AG im Auftrag des Weltenervierats -Deutschland e.V.,</td>
</tr>
<tr>
<td>Datum</td>
<td>Titel</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>9. Oktober 2012</td>
<td>PVGIS</td>
</tr>
<tr>
<td></td>
<td>Quasch</td>
</tr>
<tr>
<td></td>
<td>V. Quaschning, Solare Unabhängigkeitserklärung, Photovoltaik, Oktober 2012</td>
</tr>
<tr>
<td></td>
<td>Raug</td>
</tr>
<tr>
<td></td>
<td>Roon</td>
</tr>
<tr>
<td></td>
<td>S. von Roon, M. Huck, Merit Order des Kraftwerksparks, Forschungsstelle für Energiewirtschaft e.V., Juni 2010</td>
</tr>
<tr>
<td></td>
<td>RWE</td>
</tr>
<tr>
<td></td>
<td>Die Energiewende, Daten und Fakten von RWE Deutschland, 6.10.2012</td>
</tr>
<tr>
<td></td>
<td>RWE2</td>
</tr>
<tr>
<td></td>
<td>RWE nimmt Batteriespeicher in Herdecke in Betrieb - Sechs Millionen Euro Investition, sieben MWh Kapazität, Pressemeldung, RWE, Februar 2018</td>
</tr>
<tr>
<td></td>
<td>Salz</td>
</tr>
<tr>
<td></td>
<td>Projekt „GrInHy“ – Green Industrial Hydrogen, Pressemeldung, Salzgitter AG, September 2016</td>
</tr>
<tr>
<td></td>
<td>Shell</td>
</tr>
<tr>
<td></td>
<td>Shell Scenarios Sky - Meeting the goals of the Paris agreement , Shell International B.V., März 2018</td>
</tr>
<tr>
<td></td>
<td>Siem</td>
</tr>
<tr>
<td></td>
<td>Weit mehr als nur heiße Luft, Pressemeldung, Siemens AG, März 2017</td>
</tr>
<tr>
<td></td>
<td>SWM</td>
</tr>
<tr>
<td></td>
<td>M-Partnerkraft - Das virtuelle Kraftwerk der SWM, Flyer der Stadtwerke München, Januar 2013</td>
</tr>
<tr>
<td></td>
<td>TEST</td>
</tr>
<tr>
<td></td>
<td>„Immer sparsamer“, test 1/2012, Stiftung Warentest</td>
</tr>
<tr>
<td></td>
<td>UBA</td>
</tr>
<tr>
<td></td>
<td>Energieziel 2050: 100% Strom aus erneuerbaren Quellen, Umweltbundesamt, Juli 2010</td>
</tr>
<tr>
<td></td>
<td>UBA1</td>
</tr>
<tr>
<td></td>
<td>Emissionsbilanz erneuerbarer Energieträger, Umweltbundesamt, Oktober 2018</td>
</tr>
<tr>
<td></td>
<td>UBA2</td>
</tr>
<tr>
<td></td>
<td>Artikel auf https://www.umweltbundesamt.de/daten/energie/kraft-waerme-kopplung-kwk#textpart-1, Oktober 2018</td>
</tr>
<tr>
<td></td>
<td>UBA3</td>
</tr>
<tr>
<td></td>
<td>Methodenkonvention 3.0 zur Ermittlung von Umweltkosten - Methodische Grundlagen, Umweltbundesamt, November 2018</td>
</tr>
<tr>
<td></td>
<td>UBA4</td>
</tr>
<tr>
<td></td>
<td>Daten und Fakten zu Braun- und Steinkohlen, Umweltbundesamt, Dezember 2017</td>
</tr>
<tr>
<td></td>
<td>UNB</td>
</tr>
<tr>
<td></td>
<td>Mittelfristprognose zur deutschlandweiten Stromerzeugung aus EEG-geführten Kraftwerken für die Kalenderjahre 2017 bis 2021, Leipziger Institut für Energie GmbH, Oktober 2016</td>
</tr>
<tr>
<td></td>
<td>Vatt</td>
</tr>
<tr>
<td></td>
<td>CO2-freie Energie fürs Quartier: Sektorenkoppelnder Stahlspeicher bringt Energiewende auf Hochtemperatur, Pressemeldung, Vattenfall, Oktober 2018</td>
</tr>
<tr>
<td></td>
<td>VFL</td>
</tr>
<tr>
<td></td>
<td>Berechnung einer risikoadäquaten Versicherungspflichten zur Deckung der Haftpflichtrisiken, die aus dem Betrieb von Kernkraftwerken resultieren, Studie der Versicherungsforen Leipzig im Auftrag des Bundesverbands Erneuerbare Energie e.V. (BEE), 1. April 2011</td>
</tr>
<tr>
<td></td>
<td>VGB</td>
</tr>
<tr>
<td></td>
<td>Kraftwerke 2020+, Stellungnahme des Wissenschaftlichen Beirats der VGB PowerTech e.V., 2010</td>
</tr>
<tr>
<td></td>
<td>VIK</td>
</tr>
<tr>
<td></td>
<td>VIK Strompreisindex Mittelspannung, Verband der Industriellen Energie- und</td>
</tr>
</tbody>
</table>
28. Anhang: Abbildungen

Abbildung 1: Entwicklung des Anteils Erneuerbarer Energien ([BMWi1], [AGEE]) am Netto-Stromverbrauch [BDEW3] in Deutschland ... 6
Abbildung 2: Durchschnittlicher Endkundenpreis (Systempreis, netto) für fertig installierte Aufdachanlagen von 10-100 kWp [ISE10] .. 8
Abbildung 4: EEG-Vergütung für PV-Strom nach dem Datum der Inbetriebnahme des Kraftwerks, mittlere Vergütung in den Ausschreibungen der Bundesnetzagentur, Strompreise aus [BMWi1], [BDEW6], durchschnittliche Vergütung für PV-Strom [BMWi5] .. 10
Abbildung 5: Preisbildung an der EEX [Roon] .. 11
Abbildung 6: Einfluss von EE auf die durchschnittlichen Spotpreise an der Strombörse [BDEW2] .. 12
Abbildung 7: Entwicklung des für die Wertermittlung genutzten mittleren Börsenstrompreises und der daraus resultierenden Differenzkosten [BDEW2] 12
Abbildung 8: PV-Ausbau und Vergütungssumme [BMWi1],[BMWi5] 14
Abbildung 10: Übersicht zu Einflussfaktoren und Berechnung der EEG-Umlage [ÖKO] 15
Abbildung 11: Entwicklung der EEG-Umlage und der EEG-Differenzkosten [ISE9] 16
Abbildung 14: Entwicklung von Brutto-Strompreisen für Haushalte (2017 geschätzt bei 3% Erhöhung), von Netto-Strompreisen für industrielle Großabnehmer [BMWi1] und Entwicklung der EEG-Umlage; die Brutto-Strompreise der Haushalte bestehen heute zu ca. 55% aus Steuern und Abgaben ... 21
Abbildung 15: ViK Strompreisindex Mittelspannung [ViK] .. 22
Abbildung 16: Stromexport (als negative Werte) für Deutschland [ISE4] 23
Abbildung 17: Grobe Abschätzung der Stromgestehungskosten für PV-Anlagen unter verschiedenen Einstrahlungsbedingungen .. 24
Abbildung 19: Konzept für ein virtuelles Kraftwerk der Stadtwerke München [SWM] ... 29
Abbildung 23: Abgeregelte elektrische Energie in GWh/Jahr [BNA3] .. 32
Abbildung 26: Stromproduktion PV + Wind in aufsteigend geordneten Stundenwerten für das Jahr 2017 ... 34
Abbildung 29: System Average Interruption Duration Index (SAIDI) für verschiedene Netzebenen in Minuten/Jahr [BNA3] ... 38
Abbildung 30: Umfrageergebnisse zur Akzeptanz verschiedener Kraftwerkstypen [AEE4] ...
Abbildung 31: Fahrzeugreichweite mit dem Jahresertrag von 1 a = 100 m² Energiepflanzenanbau (2,3) und von 40 m² PV-Modulen, aufgeständert auf 100 m² ebener Grundfläche, Quellen: Photon, April 2007 (1) und Fachagentur Nachwachsende Rohstoffe (2), (3) .. 42
Abbildung 32: Prognostizierte Vollbenutzungsstunden für ganzjährig betriebene Anlagen, gemittelte Werte für die Jahre 2012 bis 2016, Daten aus [ÜNB] 43
Abbildung 33: Horizontale jährliche Globalstrahlungssumme in Deutschland, gemittelt über den Zeitraum 1981-2010 [DWD] ... 45
Abbildung 34: Entwicklung der atmosphärischen CO₂-Konzentration und der mittleren globalen Temperaturveränderung nach dem NASA Global Land-Ocean Temperature Index [IEA2] ... 46
Abbildung 35: Schätzungen der atmosphärischen CO₂-Konzentration und der Temperatur in der Antarktis auf Basis von Eisbohrkernen [EPA], CO₂-Konzentration für 2016 wurde hinzugefügt ... 47
Abbildung 36: Vermiedene Treibhausgasemissionen durch die Nutzung erneuerbarer Energien im Jahr 2017 [UBA1] ... 48
Abbildung 37: Entwicklung des jährlichen PV-Zubaus für Deutschland und die restliche Welt, Zahlen von EPIA (bis 2010), IHS (bis 2017), PV Market Alliance (Schätzung 2018) und Trendforce (Prognose 2019) ... 49
Abbildung 39: Importquoten für fossile und nukleare Primärenergieträger (www.umweltbundesamt.de) ... 53
Abbildung 40: Entwicklung der Kosten für die Bereitstellung der Primärenergie in Deutschland [ÖKO3] .. 53
Abbildung 41: Struktur des Endenergieverbrauchs nach Anwendungsbereichen für Deutschland im Jahr 2017, Zahlen aus [BMWi1] ... 54
Abbildung 42: Szenario eines deutschen Energiesystems, schematische Darstellung der Struktur. [ISE5] .. 55
Abbildung 43: Schematische Darstellung einer Residuallastkurve für Deutschland bei Stromversorgung mit 100% EE, mit Erzeugern (+) und Lasten (-) 56
Abbildung 44: Entwicklung der globalen Stromerzeugung nach Technologien im Sky-Szenario; der Durchmesser der Tortendiagramme entspricht dem globalen Strombedarf [Shell] ... 58
Abbildung 45: IEA-Prognosen und tatsächliche Entwicklung des globalen jährlichen PV-Zubaus (https://twitter.com/AukeHoekstra)... 58
Abbildung 46: Stromertragsprofile von PV-Anlagen in verschiedenen Montagevarianten, berechnet mit der Software PVsol für einen überwiegend klaren Julitag am Standort Freiburg ... 59
Abbildung 47: Rechenbeispiel für den spezifischen Monatsertrag einer PV-Anlage am Standort Freiburg für südorientierte Module mit 30° Neigung (max. Jahresertrag) und 60° Neigung ... 60
Abbildung 48: Verfügbarkeit von Kraftwerken [VGB] ... 61
Abbildung 49: Stromverbrauch eines durchschnittlichen Haushalts ohne Warmwasseraufbereitung [RWE] ... 62
Abbildung 50: Fiktive Jahresstromproduktion (8760 Stunden) für 200 GW PV und 200 GW Wind, extrapoliert auf Basis von Installations- und Ertragsdaten des Jahres 2017. 63
Abbildung 51: Gesamtleistung von Wasserkraftwerken in ausgewählten Ländern, Stand 2010 [Prog]; die Zuordnung der Kapazitäten zu den einzelnen Kraftwerkstypen unterscheidet sich je nach Datenquelle. ... 64
Abbildung 52: Eigenverbrauchsanteil in Abhängigkeit von Batteriekapazität und Leistung des ... 67
Abbildung 53: Gegenüberstellung der konventionellen und der netzdienlichen Betriebsführung [ISE7] ... 68
Abbildung 54: Mögliche Pfade zur Wandlung und Speicherung von PV-Strom mit orientierenden Angaben zu Wirkungsgraden ... 70
Abbildung 55: Vereinfachte schematische Darstellung eines Erneuerbaren Energiesystems mit den wichtigsten stromnetzgebundenen Bausteinen der Kategorien Gewinnung, Wandlung, Speicherung und Verbrauch 71