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ABSTRACT: For forecasting the power output of a photovoltaic (PV) power plant, solar irradiance forecasts are an 

essential input. Forecasts generated from different sources and models such as satellite data, numerical weather models, 

or irradiance measurements, perform differently depending on the forecast horizon. An optimized forecast for each 

horizon can be derived by combining several different source forecasts via a machine learning (ML) model to create a 

resulting ‘blended’ forecast. The training of an ML blending model requires power generation data of the considered 

PV power plant as a target variable. Typically, power measurements from the plant are used for this purpose. However, 

poor quality or limited availability of power measurements will lead to low quality blended forecasts as a result. In this 

work we consider intra-day forecasts, obtained from blending numerical weather predictions with satellite-derived 

forecasts, for a large PV plant with a capacity of 1 GW. The plant is frequently subject to curtailment by grid operators, 

which limits the reliability of its power measurements. This poses a significant challenge for the optimization of the 

blending model, resulting in a notable underestimation of the power forecasted by the model in high-power situations. 

We present an approach to improve forecast blending by using satellite derived power as a replacement for 

measurements in model training. We evaluate the effect of this replacement for two different ML blending models: a 

Huber linear regressor and a neural network. The performance of the different models is characterized by employing 

commonly used metrics such as RMSE and BIAS, as well as a distribution-oriented evaluation framework. 
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1 INTRODUCTION 

 

Reliable forecasting of PV power production is an 

important tool for a variety of applications: power grid 

operators require feed-in forecasts for grid regulation, 

power plants with integrated storage capabilities utilize 

production forecasts to optimize their battery usage and 

energy traders need forecasts when selling energy 

produced by PV plants. For forecasting the power output 

of any PV power plant, solar irradiance forecasts are an 

essential input. Irradiance forecasts can be obtained from 

different sources and models, such as satellite data, 

numerical weather models, or irradiance measurements. 

Each source, and the specific forecast type generated from 

it, will vary in performance depending on the considered 

forecast horizon. For example, satellite-based forecasts are 

viable for short-term horizons of up to several hours, while 

predictions from numerical weather models are viable for 

up to several days. 

 To obtain an optimized forecast for a given location 

and plant, different input forecasts can be combined 

through a weighting scheme, resulting in an optimal 

forecast for each forecast horizon (see, e.g., [1] and 

references therein). We refer to this process as forecast 

blending. The blending can be accomplished by a variety 

of different machine learning models, which may be 

trained using PV measurements from the power plant. We 

can express this problem as 

 ���� = � 

( 1 ) 

with a forecast blending model f, power measurements y, 

and x representing all input features of the model. 

Depending on the model, input features can consist of 

irradiance forecasts from different sources, PV power 

forecasts obtained by converting irradiance forecasts to 

power through application of a PV simulation, or other 

ancillary features such as e.g., solar position. 

 Training of the model is performed on a dataset 

containing features and corresponding measurements 

���� , ���
�∊� spanning a certain time range . The quality 

of the forecasts produced by the forecast model very much 

depends on the quality of the available power 

measurements used in training. If the quality of the 

measurements is poor, or their availability is limited, the 

quality of the resulting blended forecast will be poor as a 

consequence. 

 One important issue causing challenging quality and 

availability of measurements are curtailment events. 

Curtailment occurs when e.g. grid operators send a signal 

to artificially reduce the production of a PV plant in order 

to ensure grid stability. Curtailment will result in PV 

power measurements which do not reflect the power that 

could potentially be generated by the plant under the given 

irradiance conditions. We denote with �� the actual 

production of the power plant, which can be different from 

the potential production � of the plant i.e., for some 

instances it holds true that �� < � due to curtailment. While 

for the applications we mentioned it is usually necessary 

to forecast the potential output � of the plant, often only 

the actual production including curtailment �� is measured 

and therefore available as a reference for model training. 

If a power plant is frequently subject to curtailment, the 

resulting effect on the measurements can cause significant 

issues in the optimization process of the blending models. 

In previous works [2] we investigated how different 

forecast sources can be best combined without the 

presence of curtailment and in following works we 

explored ways to handle curtailment by detecting it using 

a curtailment detection model [3] and adapting model 

training to the presence of curtailment by tweaking loss 

functions used in model training [4]. 

 In this work we present an approach to improve 

forecast blending by introducing satellite derived power as 

the target variable in model training, thereby replacing the 

PV power measurements. We investigate this approach for 

intra-day forecasts up to horizons of 4 hours that are 

generated for a power plant with 1 GW installed capacity 

in China. The forecasts are obtained by blending a 

satellite-based forecast with numerical weather 

predictions. For the blending model we explore two 
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options, a linear Huber model [5], which possesses a built-

in resilience against outliers and a neural network. We 

evaluate the different models following verification 

techniques recently illustrated by Yang et. al. [6]. 

 The remainder of the paper is structured as following: 

Section 2 discusses the measurement data, curtailment and 

the challenges it introduces to the measurements, as well 

as the dataset of input forecasts used in this work. Section 

3 describes our approach to improve the generated blended 

forecasts, including the satellite data used as replacement 

in model training and the blending models that were 

employed. Section 4 compares our results obtained from 

different models and training data. Section 5 summarizes 

and concludes. 

 

 

2 DATASETS 

 

2.1 PV power measurements 

 The power plant for which we evaluate our approach 

is a PV plant of 1 GW installed capacity in the Qinghai 

province of China. Measurements of produced power are 

available, but the plant is subject to frequent curtailment 

by grid operators which limits the reliability of the 

measurements. We work with measurements of the total 

power plant output resampled to 15-minute mean values. 

Our dataset includes data from March 2020 to March 

2021. 

 

2.2 Curtailment 

 Curtailment represents the artificial reduction of the 

power production of a PV plant at times where less power 

feed-in to the grid is required. The actual information of 

when curtailment is being applied at the plant and to what 

extent the power production is curtailed is often not 

available. In our previous work [3] we developed a 

curtailment detection method � which aims to predict 

whether a datapoint ��� , ���� is subject to curtailment, i.e.,  

 

����� = �        1, �� �� = �0, ����  

( 2 ) 

The curtailment detection method is based on a 

comparison of measurements and Active Generation 

Control (AGC). An example of a day with detected 

curtailment is shown in Figure 1. The forecast model 

training is enhanced by replacing the training dataset with 

a curtailment filtered version ���� , ����|����� = 1
�∊�. 

While we expect some improvement from the application 

of a curtailment filter to training data of a blending model 

before the model optimization process, since the number 

of uncorrelated data points ���, ���� will be reduced, it will 

also introduce new challenges. Applying a curtailment 

filter will result in many missing data points, especially for 

periods with potentially large power generation (see 

Figure 1). Also, due to imperfections in filter performance, 

the filtered data can still contain curtailed data points as 

outliers, reducing the quality of the remaining data. 

 

2.3 Model input 

 To create a blended forecast which is optimized for 

each horizon, we combine input forecasts from different 

sources and additional solar position features via a 

machine learning (ML) model. In this work, we use 

numerical weather predictions (NWP) from the European 

Centre for Medium-Range Weather Forecasts (ECMWF), 

and cloud motion vector forecasts from images of the 

geostationary Himawari satellite, which is operated by the 

Japan Meteorological Agency. 

 The NWP data with an original resolution of 1 hour is 

upsampled to time steps of 15 minutes by interpolation of 

the clear-sky index. The satellite-based forecasts are 

directly created in 15 minute steps by applying the heliosat 

method [7] and cloud motion vectors [8] on satellite 

images. We make use of the deepflow algorithm [9] to 

compute cloud motion vector fields, using the 

implementation from the OpenCV library [10]. Both the 

resampling of NWP irradiance as well as the heliosat 

method require modelled clear-sky irradiance, for which 

we use the clear-sky model by Dumortier [11]. 

 To convert these irradiance forecasts to forecasts of 

PV power, we apply a PV simulation adapted for the 

specific plant. The simulation consists of several steps: 

First, global horizontal irradiance (GHI) values are 

converted into plane of array irradiance using the DIRINT 

separation model [12] and the transposition model by 

Perez et. al. [13]. For both models we rely on the 

implementations in PVLIB [14]. The subsequent steps to 

derive PV power from plane of array irradiance are 

implemented inhouse by a parametric model-chain [15]. 

The simulation also requires an ambient temperature input 

for which we employ the ECMWF NWP temperature 

forecasts. A more detailed description of the source 

forecasts and the PV simulation is available in [4]. 

 

2.4 Training and testing set 

 For the evaluation of the performance of the different 

blending models, we divide the entire available dataset 

into a training and a testing set. The models are optimized 

on the training data, and evaluation is carried out on the 

testing data. We divided the data along the base times (i.e. 

forecast creation times), and randomly sampled 67% of 

forecasts into the training set. The remaining 33% of the 

forecasts are used for testing.  

 Training and evaluation for all models is performed on 

data where curtailment has been removed by applying the 

filtering method described in Section 2.2. 

 

 

3 APPROACH AND MODELS 

 

3.1 Blending models 

 For the blending models we explore two different 

Figure 1: PV power and global horizontal irradiance 

(GHI) measurements for a day with mostly clear-sky 

conditions. The highlighted area is labeled as curtailed by 

the curtailment detection model. 
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options, a linear Huber regressor and a Neural Network 

(NN). The models generate intra-day forecasts with a time 

resolution of 15 minutes. New forecasts are also generated 

every 15 minutes. Here, we evaluate the forecasts for 

horizons up to 4 hours. 

 

3.1.1 Huber regressor 

 The Huber regressor [5] is a linear regression model 

with a built-in resilience against outliers, which can be 

tuned via a hyperparameter.  For samples where the 

deviation between model and measurement falls below a 

certain threshold, the squared loss is optimized, whereas 

for samples with deviations above the threshold, the 

absolute loss is optimized. Thereby, less weight is 

attributed to samples constituting large deviations i.e., 

outliers. In this work, the scikit-learn [16] implementation 

of the Huber model was used and the corresponding 

hyperparameter ε was kept fix at a value of 1.05. 

 Three input features were used for this model: the PV 

simulated values of both, the satellite-derived irradiance 

forecast and NWP irradiance, and the cosine of the solar 

zenith angle. A separate model was trained for each 

forecast horizon. In the training for each horizon, data 

from a window of a total of 5 horizons around the target 

horizon were included, to avoid overfitting and to generate 

a smooth output forecast. 

 

3.1.2 Neural network 

 In order to compare the linear Huber model with a non-

linear model we chose to train a neural network with 2 

hidden layers and a 100 neurons per layer. For the 

implementation we rely on the multi-layer perceptron [17] 

implemented in scikit-learn [16]. The network was trained 

using stochastic gradient decent [18] to minimize MSE 

(see Section 3.3) and the input features for the model were 

PV simulation values of NWP and satellite-based 

predictions and the solar zenith angle. In addition to those 

features we added the forecast horizon as another input 

feature, allowing the model to make predictions for several 

horizons in one forward pass of the model. 

 

3.2 Replacement of training data 

 To avoid model training being affected by curtailment, 

or potentially other circumstances causing challenging 

quality and availability of measurements, we introduce a 

satellite-derived target variable as a replacement for the 

measurements in model training. The new target variable 

is obtained from converting satellite-derived irradiance 

values of our real-time processing chain (forecast horizon 

of 0 minutes) to PV power by means of a PV simulation. 

We refer to this as ‘nowcast’ values. This change in the 

target variable can be expressed as replacing �� with 

simulated nowcast values �������. One advantage is that 

these simulated values are not subject to curtailment, 

meaning they do not artificially underestimate the true 

output potential of the power plant. They could also be 

used to mitigate data gaps which arise from removing 

curtailed datapoints, this is however not investigated in 

this work. Possible disadvantages include � being merely 

an approximation of the potential power plant output ������� � �. 

Figure 2 shows power values from the satellite-derived 

nowcast against power measurements where curtailed data 

were removed by applying the curtailment detection 

method outlined in Section 2.2. The measurements show a 

reasonable agreement with the nowcast, suggesting that its 

use as a replacement in model training is worth to 

investigate. For our evaluation, the blending models were 

trained once on the actual measurements and once on the 

satellite-derived nowcast. 

 

 

3.3 Evaluation metrics 

 A common metric used in the evaluation of PV power 

forecasts is the root-mean-square error (RMSE), which is 

the root of the mean-square error, 

��� = 1N !"���� �� # �� ��$
�

 %. 
( 3 ) 

The RMSE can be complemented by considering the BIAS 

'()� =  1N !" ��� �� # �� �
�

%. 
( 4 ) 

In addition, to obtain a more in-depth understanding of 

forecast model performance, a distribution-oriented 

approach to evaluation is of great value. In this framework, 

data comprising forecasts generated by the blending 

models and corresponding measured power can be 

expressed as a 2-dimensional distribution *��, ���. This 

joint distribution *��, ��� can be related to marginal and 

conditional distributions via two Murphy-Winkler 

factorizations [19] 

 *��, ��� = *���|�� *��� 

( 5 ) *��, ��� = *��|��� *���� 

( 6 ) 

 

called calibration-refinement and likelihood-base rate 

factorization respectively. Following these factorizations, 

the ��� can also be decomposed in two distinct ways (as 

presented e.g., in [20], [6]) 

 ��� = +���� ,  �-.� # ����|��/$
# �-.����|�� # �����/$ 

( 7 ) 

Figure 2: PV power derived from a satellite-based 

irradiance nowcast against measured power. Only data 

points for which no curtailment was detected are 

displayed. Relative RMSE and BIAS are calculated with 

respect to installed capacity of 1 GW using daylight values 

only.    



Presented at the WCPEC-8, 8th World Conference on Photovoltaic Energy Conversion, 26-30 September 2022, Milan, Italy 

 

 

��� = +��� , �0�.�� # ���|���/$
# �0�.���|��� # ����/$ 

( 8 ) 

 

with � indicating the expectation value. In the first 

decomposition (Eq. (7)), +���� denotes the variance of the 

measurements, while the second and third term can be 

referred to as type-1 conditional bias and resolution 

respectively. In the second decomposition (Eq. (8)), +��� 

denotes the variance of the forecast values, while the 

second and third term can be referred to as type-2 

conditional bias and discrimination, respectively. Note 

that +���� is a fixed property of the dataset, while +��� is 

subject to the optimization. When evaluating forecast 

models, the conditional biases are to be minimized while 

the resolution and discrimination components are to be 

maximized.  

 

 

4 RESULTS 

 

 Evaluations shown in this section were all carried out 

on the testing set. 

 

4.1 Model comparison using RMSE and BIAS 

 We begin the comparisons by looking into the 

difference between models trained on power 

measurements �� and satellite derived power nowcast 

values �������. Figure 3 and 4 show scatter plots of 

forecasted vs. measured PV power for the Huber model 

and NN model respectively. For both ML models, we find 

that the model trained on measurements has a strong 

tendency to underestimate large measurements between 

600 and 800 MW, which can be explained by those 

situations being underrepresented in the dataset as well as 

undetected curtailed values still being present during 

training. This lowers the correlation between input 

forecasts and the target variable (the measurements) which 

in turn tends to pull down the forecasted values towards 

the mean. Training on the nowcast visibly alleviates this 

underestimation, the improvement being slightly more 

noticeable for the Huber model. 

 However, forecasts from the nowcast-trained models 

exhibit a higher RMSE and BIAS when evaluated against 

the measurements, as presented in Figure 5. In part this is 

to be expected given the relation between measurements 

and satellite nowcast shown in Figure 2. We note though, 

that the increase in both metrics is much stronger for the 

Huber model than for the NN. 

 

4.2 Model comparison using conditional distributions 

 In order to further investigate the difference of the 

measurement-trained and nowcast-trained models we 

divide the forecasted values into bins and compute 

conditional distributions following the Murphy Winkler 

factorizations (Eq. (5) and (6)). In Figure 6, the panels on 

the left side show conditional distributions binned along 

the measured and forecasted values for an example 

horizon of 2 hours for the Huber model. The panels on the 

right side of Figure 6 show the same for the neural 

network. We find that the underestimation in the high-

power range of 600 to 800 MW of the measurement-

trained models (blue and cyan distributions) is very 

prominent: The distributions in this range are barely 

present for the forecast binning (Figure 6, upper panels) 

and the distributions clearly underestimate the 

measurements for the measurement binning (Figure 6, 

lower panels). The nowcast-trained models (red and 

orange distributions) alleviate this underestimation but 

Figure 3: Scatter plot of forecasts from the Huber model 

for horizons up to 4 hours, trained on measurements (blue) 

or satellite-derived nowcast (red). 

 

Figure 4: Scatter plot of forecasts from the NN model for 

horizons up to 4 hours, trained on measurements (cyan) or 

satellite-derived nowcast (orange). 

Figure 5: RMSE and BIAS of forecasts generated by 

different models in dependence of forecast horizon. 

Values are normalized with respect to installed capacity of 

1 GW. 
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also introduce an overestimation in the low to intermediate 

power region of 100 to 300 MW, which is particularly 

strong for the Huber model. Apart from that, it is 

interesting to note that the measurement distributions for 

the upper most forecast bins, which are only visible for the 

nowcast-trained models (see Figure 6, upper panels) tend 

towards a uniform distribution. This highlights again that 

the measurements have almost no correlation to forecast 

values in that region. 

 

4.3 Comparison using MSE factorization 

 Lastly, we compare the different models with respect 

to the components of the MSE factorizations given in Eq. 

(7) and Eq. (8). The upper left panel of Figure 7 shows the 

three components of Eq. (7), the variance of 

measurements, the type-1 conditional bias, and the 

resolution, for all four investigated models and with 

increasing forecast horizon. The respective MSE 

components are of similar magnitude for all four models, 

with the contributions from variance and resolution being 

much larger than the type-1 conditional bias. 

 We observe that training on the nowcast (red and 

orange lines) tends to decrease the resolution and increase 

the type-1 bias for both the Huber and NN model, meaning 

both MSE components become slightly worse when 

evaluated against measurements. This results in the overall 

increased RMSE as seen in Figure 5. 

 The lower left panel of Figure 7 shows the three 

components of the MSE decomposition given in Eq. (8), 

the variance of the forecasts, type-2 conditional bias, and 

discrimination, for the investigated models and with 

increasing forecast horizon. We can see more prominent 

differences between the models, particularly in the 

variance of forecast values and the discrimination. It is 

evident that training on the nowcast lowers the type-2 

conditional bias for both the Huber and NN model and 

additionally increases the discrimination, which are in 

general favorable qualities. The lower type-2 conditional 

bias reflects forecast distributions which are better 

centered on the diagonal (see Figure 6, lower panels) and 

a higher discrimination means forecasts will differ more 

strongly for different measurement situations. Taken 

together, this means we obtain a better mapping of the 

forecasts to the potential range of power measurements. 

However, the significantly larger variance of the forecasts 

outweighs the favorable trends in type-2 conditional bias 

Figure 6: Comparison of conditional distributions for Huber models (left panels) and NN models (right panels) trained on 

either measurements or nowcast, for an example forecast horizon of 2h. Upper panels: distributions conditioned on forecasts *���|��. Lower panels: distributions conditioned on measurements *��|���. 
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and discrimination and leads to the overall increased 

RMSE for both nowcast-trained models, when evaluated 

against measurements, as displayed in Figure 5. 

 It should be noted here that J. Moskaitis points out in 

[20] that a comparison of discrimination between two 

models is only fair if their variances are similar, because 

forecast variance and discrimination are related. In their 

work they therefore split the MSE only into two terms, the 

conditional bias and a so-called shape term, which 

comprises both variance and discrimination. Here, 

following Yang et al [6] we chose to present the full 

decomposition into three terms to allow a more detailed 

discussion. 

 

4.4 Complementary evaluation with respect to the 

satellite-derived nowcast 

Due to the limited reliability of the power 

measurements, an evaluation of the forecasts based solely 

on these measurements is of course inherently 

problematic. Therefore, we complement the measurement-

based evaluation with an evaluation against the satellite-

based nowcast which is free of curtailment and was used 

to replace the measurements in model training. In this 

evaluation a lower RMSE of the nowcast-trained models 

compared to the measurement-trained models can be 

expected, since the evaluation is carried out with respect 

to the target variable used in training. Figure 8 shows the 

RMSE and BIAS for all models with respect to the 

satellite-derived nowcast. Indeed, we see an improved 

RMSE and BIAS of the nowcast-trained models, except 

for horizons >1.5 hours for the Huber model, where an 

increased BIAS manifests, leading also to an increased 

RMSE (this can occur since the Huber model does not 

optimize MSE in training). For a horizon of 0 minutes, we 

can observe the Huber model having an RMSE of zero, 

which is due to the fact that the nowcast values are an input 

feature for the models and that the Huber model was 

trained separately for each horizon. The NN does not drop 

to an RMSE of zero since several horizons of the model 

are trained together in one pass. 

 The upper right panel of Figure 7 shows the MSE 

components of Eq. (7) calculated with respect to the 

satellite-derived nowcast. There is an overall higher 

variance of the nowcast values compared to the variance 

of measurements, which is accompanied by a higher 

resolution for all four models. As opposed to the 

evaluation against measurements in the upper left panel, 

we see here that the type-1 conditional bias is improved 

for the nowcast-trained models, apart from the Huber 

model for horizons larger than 1.5 hours, exhibiting an 

increased type-1 bias. Since the difference between the 

variance and resolution is smaller or similar here than in 

the evaluation against measurements this gives together 

with the improved type-1 bias the overall smaller RMSE 

for the nowcast-trained models compared to their 

measurement-trained counterparts (see Figure 8). The 

Figure 7: Square root of the components of the MSE factorization given in Eq. (7) (upper panels) and Eq. (8) (lower panels) 

normalized with respect to installed capacity for measurement-trained Huber (blue) and NN (cyan) models, as well as nowcast-

trained Huber (red) and NN (orange) models in dependence of forecast horizon. Left panels: Calculation with respect to 

measurements. Right panels: Calculation with respect to satellite-derived nowcast. 
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exception being again the later horizons of the Huber 

model, where the type-1 bias was not improved. 

 In the lower right panel of Figure 7 the components of 

the MSE decomposition given in Eq. (8) are shown. The 

improvement of the discrimination and conditional type-2 

bias components of the nowcast-trained models compared 

to the measurement-trained models, which were already 

discernable in the measurement-based evaluation (lower 

left panel), are again present, and here outweigh the 

increased variance of the nowcast-trained models, leading 

to the overall smaller RMSE (see Figure 8). These results 

emphasize, although to some degree expected, the 

improvements obtained from the nowcast-trained models. 

 

 

5 SUMMARY AND CONCLUSION 

 

 For a dataset with measurements of limited reliability, 

we explored the replacement of measurements by a 

satellite derived PV power nowcast in model training to 

improve the results of forecast blending. Two types of 

blending models were investigated, a linear Huber model 

and a neural network. For both models we compared 

results after training the model on measurements and on a 

satellite-derived nowcast by considering standard metrics 

such as RMSE and BIAS and a distribution-oriented 

evaluation framework. 

 Due to the lack of reliable ground truth data, it is 

difficult to assess which model has the best performance. 

Evaluating a model against the variable it was trained on 

is generally expected to give a better RMSE (assuming 

training is based on MSE optimization). Nowcast-trained 

models for short horizons have the additional advantage of 

having an input (the satellite-derived forecast) that is 

highly correlated to their target variable, allowing their 

RMSE to reach even lower values when calculated with 

respect to the nowcast. When evaluating against 

measurements, the observed higher RMSE of the nowcast-

trained models compared to the measurement-trained 

models is therefore expected and based on the differences 

between measurements and nowcast. First there is the 

inherent difference between satellite data and ground-

based measurements, next there is the difference between 

a PV power simulation and actual power measurements. 

These two sources of error would be present in any model 

trained on satellite and evaluated against measurement 

data. The third component in our case are the effects of 

curtailment, which further lower the correlation between 

measurements and satellite-derived nowcast. Because, 

even though a model for curtailment detection was 

applied, some undetected curtailed values remain in the 

data set. In turn, when evaluating against the nowcast, as 

expected the nowcast-trained models exhibit a lower 

RMSE than their measurement-trained counterparts (an 

exception being larger horizons of the Huber model, which 

can be explained by Huber models not optimizing the 

MSE). Therefore, from these results alone we cannot find 

a definitive indicator of forecast quality. 

 In general, conventional comparisons of summary 

error metrics like RMSE or BIAS are not suitable to 

highlight different aspects of forecast quality. In our case 

they do not convey the fact that large power values are 

underrepresented in the forecasts. Therefore, we 

investigated the forecasts with a distribution-oriented 

approach, where different attributes of forecasts can be 

distinguished. We observe that the nowcast-trained 

models have lower type-2 conditional biases and larger 

discriminations, in both the evaluation against 

measurements and against the nowcast. This corresponds 

to a better mapping of forecasts to the range of power 

values and reflects the visible alleviation of the 

underestimation in the high-power region. When 

evaluated against measurements, this partial improvement 

in conditional type-2 bias and discrimination is mitigated 

by a strongly increased variance, leading to an overall 

higher RMSE of the nowcast-trained models. When 

evaluated against the satellite-derived nowcast, the 

drawbacks of disproportionally large forecast variances 

disappear (except for horizons >1.5 hours of the Huber 

model), while the improvements in discrimination and 

type-2 conditional bias become more pronounced, thus 

leading to an overall lower RMSE of the nowcast-trained 

models compared to the measurement-trained ones. 

 Though we cannot claim that evaluation with MSE 

decompositions do directly lead to “best-performing” 

model recommendations, the detailed evaluations give 

additional insight into model performance. The results 

presented in this work suggest it worthwhile to explore the 

use of satellite based nowcast-trained models. These 

models have shown to overcome the underestimation for 

large PV power values that occur when the measurement 

data used in training is of limited reliability. Which kind 

of model (e.g., NN, Huber or other options) is most 

suitable may depend on the individual use-case and input 

data. In the work presented here, the Huber model 

alleviates the underestimation in the high-power range of 

600 to 800 MW more strongly than the NN, but this comes 

at the cost of also introducing a stronger overestimation in 

low to intermediate power values around 100 to 300 MW. 

The neural network (which is MSE optimized) produces 

more balanced results and with its nonlinear nature 

additionally might have more flexibility in adaption to the 

data. It exhibits the lowest RMSE in the evaluation based 

on the nowcast for almost all horizons. 

 Further enhancements in the generated forecasts can 

be expected from a fine tuning of the models or improving 

the satellite-derived PV power data. The latter could be 

achieved for example by improving the underlying 

satellite method and PV simulation, or by adaption of the 

satellite-derived data to measurements through 

Figure 8: RMSE and BIAS of forecasts generated by 

different models in dependence of forecast horizon,

calculated with respect to the satellite-derived nowcast. 

Values are normalized with respect to installed capacity of 

1 GW. 



Presented at the WCPEC-8, 8th World Conference on Photovoltaic Energy Conversion, 26-30 September 2022, Milan, Italy 

 

 

postprocessing (e.g., bias or trend removal). The more 

accurate we can infer PV power from satellite data, the 

more accurate will the models be when compared to actual 

measurements. Furthermore, using satellite based 

nowcasts for model training holds the potential to mitigate 

data gaps that arise from removing curtailed datapoints, 

which is expected to be an additional advantage. 
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