R&D Project NextTec – Next Generation High Throughput Production Processes & Inline Characterization for Si Solar Cells

Fraunhofer ISE: <u>Florian Clement</u>, Marius Meßmer, Hannes Höffler, Daniel Ourinson, Baljeet Singh Goraya, Gernot Emanuel, Fabian Meyer, Andreas Lorenz, Jonas Bartsch, Matthias Demant, Sebastian Nold, Andreas Wolf, Martin Zimmer, Ralf Preu; h.a.l.m.: Klaus Ramspeck; ISRA: Marc Hemsendorf; RENA: Bendikt Straub; Schmid: Christian Ebert; ASYS: Matthias Drews; RCT Solutions: Wolfgang Jooss; ISC Konstanz: Elina Schmid; HTWK: Stephan Schoenfelder; Fraunhofer CSP: Ringo Koepge

8th WCPEC Milano, 29.09.2022 www.ise.fraunhofer.de

Motivation – ITRPV Roadmap 2022 [1]

Progressive Scenario, new tools for wafer sizes M10 (182.0 x 182.0 mm²)

> ITRPV: Increase in throughput rates by approx. factor 2 estimated in the next ten years

Progressive Scenario, new tools for wafer sizes M10 (182.0 x 182.0 mm²)

Page 2 28.09.2022 © Fraunhofer ISE

[1] VDMA, ITRPV, 2022

Short Project Description

- R&D project NextTec
- German consortium of equipment and metrology manufacturers as well as R&D institutes
- Funded by the German government
- Running Time: 01.05.2019 31.10.2022

Supported by:

on the basis of a decision by the German Bundestag

Contract Nr: 03EE1001A

Aim of the NextTec Project

NextTec Project Aim of the NextTec Project

- Increase throughput rates by factor 2 to 3
 - Similar cell efficiency
 - No significant increase in equipment footprint and costs
- System throughputs: > 13,000 wafers per hour (M10 wafer)
- Production capacity: > 1 GW per system and year

NextTec Processes – Overview

NextTec Processes – Overview

[1a] PhD thesis Sebastian Nold, 2019

Page 7 28.09.2022 © Fraunhofer ISE

Techno-economic analysis [1a]: for all NextTec processes

NextTec Processes – Overview

NextTec Processes – Overview

NextTec Processes – Overview

High speeed coating technologies: Spray pyrolysis, PVD

VON ARDENNE 🗾

For more information (this conference):

- Spray pyrolysis: Heitmann, Bartsch et al., 1BO.3.3
- PVD: Schneiderloechner et.al. 1DO.12.4, 1DV.4.40

NextTec Processes – Overview

Inline printing processes based on rotational printing

NextTec Processes – Overview

High belt speeds and novel heating elements

NextTec Processes – Overview

SE

NextTec Processes – Overview

NextTec Processes – Overview

NextTec Processes – Focus in this talk

Stack diffusion with APCVD doping layers

Inline printing processes based on rotational printing

High belt speeds and novel heating elements

Inline laser processes with precise laser beam control

Innovative contactless IV testing

Stack Diffusion with APCVD doping layers – Our Solution for High Throughput Diffusion Processes

Stack Diffusion / Oxidation [2]

- Stack oxidation / diffusion allows high throughput processes with similar quality
- Combination with pre-deposition of dopant sources e.g. by APCVD inline processing
- In total 6000 M10 Wafer per tube / process (state of the art: approx. 1600 wafers)

Experimental setup for the stack diffusion in a special quartz boat

Stack Diffusion / Oxidation [1]

- Stack oxidation / diffusion allows high throughput processes with similar quality
- Combination with pre-deposition of dopant sources e.g. by APCVD inline processing
- In total 6000 M10 Wafer per tube / process (state of the art: approx. 1600 wafers)
- Almost similar cell efficiencies for TOPCon solar cells are reached, process optimization ongoing

Diffusion Configuration	V _{oc} (mV)	J _{sc} (mA/cm²)	FF (%)	η (%)
BBr ₃ reference	705	40.9	81.6	23,6
APCVD BSG stacked	700	40.8	81.4	23,1

Experimental setup for the stack diffusion in a special quartz boat

Rotary Printing – Our Solution for High Throughput Printing Processes

60

- Innovative inline printing processes based on rotary screen printing
- Highly promising to overcome the throughput limit of flatbed screen printing

- Innovative inline printing processes based on rotary screen printing
- Highly promising to overcome the throughput limit of flatbed screen printing
- Our demonstrator machine allows throughput rates of 15.000 wafers per hour for double lane (state of the art: approx. 6.500 wafers)

- Innovative inline printing processes based on rotary screen printing
- Highly promising to overcome the throughput limit of flatbed screen printing
- Our demonstrator machine allows throughput rates of 15.000 wafers per hour for double lane (state of the art: approx. 6.500 wafers)

- Innovative inline printing processes based on rotary screen
- Highly promising to overcome the throughput limit of flatbed screen printing
- Our demonstrator machine allows throughput rates of 15.000 wafers per hour for double lane (state of the art: approx. 6.500 wafers)
- Rotary Printing allows silver paste reduction

Rotary Printing Processes [3]

- Innovative inline printing processes based on rotary screen
- Highly promising to overcome the throughput limit of flatbed screen printing
- Our demonstrator machine allows throughput rates of 15.000 wafers per hour for double lane (state of the art: approx. 6.500 wafers)
- Rotary Printing allows silver paste reduction and similar efficiency level

Method	Avg/Best	Jsc [mA/cm²]	Voc [mV]	FF [%]	η [%]
Rotary SP (rear side)	Avg	38.5	727	78.6	22.0
	Best Cell	38.7	729	79.4	22.2
Flatbed SP (rear side)	Avg	38.5	727	78.9	22.1
	Best Cell	38.7	731	79.7	22.4

Two groups of SHJ cells (approx. 20 cells per group)

Performance of material (SHJ precursors) generally limited to around 22.5%

Rotary Printing Processes [3]

- Innovative inline printing processes based on rotary screen
- Highly promising to overcome the throughput limit of flatbed screen printing
- Our demonstrator machine allows throughput rates of 15.000 wafers per hour for double lane (state of the art: approx. 6.500 wafers)
- Rotary Printing allows silver paste reduction and similar efficiency level
- Combination with Multi-Nozzle Dispensing very promising approach for future cell metallization

[3] Lorenz et al, Metallization Workshop, 2021; [4] Gensowski et al., 9th Metallization Workshop / AIP Conf. Proc. 2367 (2021)

"On the Fly" Laser – Our Solution for High Throughput Laser Processes

"On The Fly" Laser Processes [5]

- Novel inline "on the fly" laser processes with precise laser beam control
 - Simple conveyor belt
 - On-the-fly laser processing with polygon scanner
 - Location of the cell determined using optical sensor
 - Laser process automatically triggered upon arrival of the moving wafer

"On The Fly" Laser Processes [5]

[5] press release Fraunhofer ISE #9 / 2022, 25.04.2022

© Fraunhofer ISE

28.09.2022

Page 29

FHG-SK: PUBLIC

"On The Fly" Laser Processes [5]

- Novel inline "on the fly" laser processes with precise laser beam control
 - Simple conveyor belt
 - On-the-fly laser processing with polygon scanner
 - Location of the cell determined using optical sensor
 - Laser process automatically triggered upon arrival of the moving wafer
- New concept allows throughput rates of 15.000 wafer per hour (state of the art: approx. 6.500 wafer)
- Similar cell efficiency for PERC solar cells achieved

LCO reference process LCO "on the fly" laser process

High Throughput Inline Furnace Processes

100

NextTec Project Inline Furnace Processes – Approach A [6]

 Inline furnace processes with novel light sources, e.g. VCSEL modules, allow higher throughputs

Lateral scheme of VCSEL heating equipment

VCSEL: vertical cavity surface-emitting laser

Inline Furnace Processes – Approach A [6]

- Inline furnace processes with novel light sources, e.g. VCSEL modules, allow higher throughputs
- Successful demonstration of short contact drying processes down to 5 s for PERC devices
- Thermography shows good process homogeneity

Lateral scheme of VCSEL heating equipment

Inline Furnace Processes – Approach B [7]

- Inline furnace processes with novel light sources, e.g.
 VCSEL modules, allow higher throughputs
- Successful demonstration of short contact drying processes down to 5 s for PERC devices
- Thermography shows good process homogeneity
- Inline furnace processes with belt speeds up to 20 m/min
- Similar cell efficiencies for contact firing (PERC)
- Throughput of approx. 13000 wafers/h for double lane (state of the art: approx. 6.500 wafer)

Contactless IV Measurement – Our Solution for High Throughput Cell Testing

Inline IV Characterization Contactless [8]

[8] Greulich et al., Silicon PV, 2022 Page 36 28.09.2022 © Fraunhofer ISE

FHG-SK: PUBLIC

Inline IV Characterization Contactless [8]

- Contactless IV Characterization
 - Suns-PL data calibrated to voltage
 - Shift suns-PL to get pseudo-IV or J_{SC} - V_{OC} curve
 - Account for series resistance >> JV contactless
- Close match with conventionally measured JV curve
- Proof of principle successful
- Measurement speed limited by cell physics, not by metrology >> high throughput rates achievable

NextTec Processes – Conclusion and Vision

NextTec Processes – Conclusion and Vision

- New solutions for high throughput processes and equipment developed
- Throughput rates > 13.000 wafer per hour and system demonstrated at PV-TEC pilot-line [9]
- New processes allow (almost) the same efficiency level
- Equipment capacity > 1GW is reachable

NextTec Processes – Conclusion and Vision

- New solutions for high throughput processes and equipment developed
- Throughput rates > 13.000 wafer per hour and system demonstrated at PV-TEC pilot-line [9]
- New processes allow (almost) the same efficiency level
- Equipment capacity > 1GW is reachable
- <u>Vison</u>: Implementation and demonstration of NextTec
 Processes in a running cell production line

Many thanks to all my co-authors Thank you for your attention!

Dr. Florian Clement florian.clement@ise.fraunhofer.de

link to Fraunhofer ISE contributions of the WCPEC-8, available as of 30.09.2022

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Contract Nr: 03EE1001A