Understanding Ion-Related Performance Losses in Perovskite-Based Solar Cells by Capacitance Measurements and Simulation

<u>C. Messmer^{1,2}</u>, J. Parion³, C. V. Meza³, S. Ramesh³, M. Bivour², M. Heydarian², J. Schön^{1,2}, H. S. Radhakrishnan³, M. C. Schubert², S. W. Glunz^{1,2}

¹ INATECH, University of Freiburg, Germany
 ² Fraunhofer ISE, Germany
 ³ IMEC, Belgium

EU PVSEC, Vienna, Austria, 25th September 2024

universität freiburg

Motivation

Understand Ion-related losses in Perovskite-Based Solar Cells (PSCs)

- Hysteresis effects impact the performance of PSCs [1-3]
- Origin: **Ion migration** within the perovskite absorber
- Goal: Understand and mitigate ion-related performance losses
- Approach: Small AC signal analysis [3,4]
 - Investigate frequency-dependent capacitances of PSCs
- Learn about device properties, e.g., ion diffusivities, built-in potential, ...

[1] Snaith *et al.*, "Anomalous Hysteresis in Perovskite Solar Cells", J. Phys. Chem. Lett. 2014
[2] Le Corre *et al.*, "Quantification of Efficiency Losses Due to Mobile Ions ...," Sol. RRL, vol. 6(4), 2022
[3] Ravishankar *et el.*, "Multilayer Capacitances: How Selective Contacts Affect ...," PRX Energy, vol. 1(1), 2022
[4] Recart, Cuevas, "Application of junction capacitance measurements...," IEEE Trans. Electron Dev., vol. 53(3), 2006

Modelling Approaches

Small AC signal analysis

Equivalent-Circuit Modelling Approach:

- Each layer: RC circuit [1]
- Geometrical capacitance (plate capacitor):

 $C_{g,L}/A = \epsilon_0 \, \epsilon_r/d_L$

TCAD Modelling (this work):

- Detailed device modelling with Sentaurus TCAD [2]
 - Poisson equation and electron/hole drift diffusion (DD)
- TCAD model was extended to AC signal analysis [3]
 - Compared to Eq.-Circuit Model
- Advantages:
 - DD-Modelling of (several types of) ions incl. preconditioning
 - Study interfaces, full (tandem) stacks, tunneling transport, ...
 - Same model for simulation of JV curves, …

universitätfreiburg

[1] Ravishankar *et al.*, "Multilayer Capacitances: …", PRX Energy, vol. 1, no. 1, 2022

[2] Messmer *et al.*, "Toward more reliable measurement procedures...", Prog Photovolt Res Appl. 2024 [3] Messmer *et al.*, "Understanding Ion-Related Performance Losses...", submitted to Solar RRL Fraunhofer

universität freiburg

💹 Fraunhofer

Ion-induced Capacitances in Perovskite Solar Cells TCAD Simulation: Dark State

universität freiburg 💹 Fraunhofer

Bias Voltage Small AC Signal Perovskite HTL ETL C (C^+)

N_{ion} [cm⁻³]

- 2·10¹

1.10¹

4-10¹⁶

2.10¹⁶

• w/o

<mark>-</mark>1.10⁻⁸

D_{ion} [cm²/s]

10⁵

 10^{6}

TCAD Simulation: Dark State

- Dark state, w/o DC bias, w/o ions, varied AC frequency
 - Geometrical capacitances in series connection:
 - High-frequency capacitance reduced by series resistance
- Mobile anions with varied concentration (immobile cations)
 - Increased low-frequency response of capacitance
- Mobile anions with varied diffusivity
 - Characteristic frequency shifts

universität freiburg

ETL

Bias Voltage Small AC Signal

HTL

🗾 Fraunhofer

Perovskite

←A) (C)

 (C^+)

6

universität freiburg 💹 Fraunhofer

ISE

Bias Voltage Small AC Signal

ISE

Bias Voltage Small AC Signal

Bias Voltage Small AC Signal

HTL

Perovskite

universität freiburg

💹 Fraunhofer

ISE

ETL

Ion-induced Capacitances in Perovskite Solar Cells

9

Ag

LiF/C60/BCP

Hybrid

Perovskite (1.53eV)

NiO

ITO

Glass substrate

▶▶ UHASSELT

Experimental Evidence

- Perovskite single junction fabricated and measured at IMEC
- What can we deduce from C-f characteristics?
 - Characteristic frequency f, here around 10 Hz \rightarrow lon diffusivity of 6.10⁻¹⁰ cm²/s
 - High-frequency regime (measured on similar sample)

universität freiburg

💹 Fraunhofer ISE

universität freiburg 🛛 🖉 Fraunhofer

Relation to JV Hysteresis

- Measured JV reverse and forward scan for same sample
- Simulated JV scans with parameters from C-f analysis
 - Very good agreement indicating the relation between C-f characteristics and JV hysteresis

JV Hysteresis: Experiment and Simulation

Reverse and Forward JV Scan Time

universität freiburg Fraunhofer

Relation to JV Hysteresis

- Measured JV reverse and forward scan for same sample
- Simulated JV scans with parameters from C-f analysis
 - Very good agreement indicating the relation between
 - C-f characteristics and JV hysteresis for varied scan-times

JV Hysteresis: Experiment and Simulation

Reverse and Forward JV Scan Time

universität freiburg Fraunhofer

universität freiburg 🛛 🖉 Fraunhofer

In-Depth Analysis of the Capacitance Plateau

universität freiburg **Fraunhofer**

In-Depth Analysis of the Capacitance Plateau

🗾 Fraunhofer universitätfreiburg

In-Depth Analysis of the Capacitance Plateau

🗾 Fraunhofer universitätfreiburg

Density N [cm⁻³]

arrier

C

In-Depth Analysis of the Capacitance Plateau

• $C_{\rm IF}$ corresponds to charge accumulation at Pero/ETL, Pero/HTL interface

universität freiburg

💹 Fraunhofer

ISE

20

In-Depth Analysis of the Capacitance Plateau

• C_{IF} corresponds to charge accumulation at Pero/ETL, Pero/HTL interface

universität freiburg **Fraunhofer**

In-Depth Analysis of the Capacitance Plateau

• $C_{\rm IF}$ corresponds to charge accumulation at Pero/ETL, Pero/HTL interface

🗾 Fraunhofer universität freiburg

universität freiburg 🛛 🖉 Fraunhofer

Simulated dark and light C-f curves

for different ETL interface properties

Band Diagram [eV]

 Capacitance under illumination increases by several orders of magnitude

- Simulated dark and light C-f curves
 - for different ETL interface properties
 - Capacitance under illumination increases by several orders of magnitude
- For lower surface recombination velocity (SRV) at ETL/Pero interface:
- Illuminated C-f curve shifts down
- Dark C-f curve is unchanged

Band Diagram [eV]

- Simulated dark and light C-f curves for different ETL interface properties Capacitance under illumination increases by several orders of magnitude For lower surface recombination velocity (SRV) at ETL/Pero interface:
 - Illuminated C-f curve shifts down
 - Dark C-f curve is unchanged
- For change in band alignment (reduced ETL/Pero conduction band offset):
 - Both illuminated and dark *C-f* curve change
 - **Low frequency plateau**: Capacitance decreases
 - **High frequency plateau**: Capacitance increases

Experimental Comparison

- Perovskite single junctions (used as top cells) fabricated at Fraunhofer ISE and measured at IMEC
 - **ETL/Pero interface unpassivated** 1.
 - **ETL/Pero interface passivated with PI*** 2.

Experimental Comparison

Experimental Comparison

 Good gualitative agreement of TCAD model and measurements

Passivation layer leads to:

- Reduced low-f capacitance
- Increased high-f capacitance
- \rightarrow Indicates lower recombination
- \rightarrow Possibly also better ETL/Pero band alignment

Conclusion

10⁵

Capacitance per Area C/A [nF/cm²] ⁰¹
⁰¹
⁰¹

- TCAD Simulation of capacitance response of PSCs:
 - Impact of ionic properties
 - Good agreement with experimental data
 - Insights into physical origin of ionic capacitance
- Link C-f response to scan-time dependent JV hysteresis
- Investigation of *C-f* curves under illumination
 - Effect of band alignment and interface recombination
 - Experimental evidence
- → Simulation-aided analysis of *C*-*f* curves contributes to **enhanced understanding** → Careful interpretation of data is essential
- Measurements are non-destructive and on device level

Vienna, Austria

Dr. Christoph Messmer Tel. +49 761 203 54176 christoph.messmer@inatech.de

[1] Messmer et al., "Understanding Ion-Related Performance Losses in Perovskite-Based Solar Cells by Capacitance Measurements and Simulation", submitted to Solar RRL

universität freiburg

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag