Addressing Edge Recombination Losses in Shingle Cells by Holistic Optimization of the Process Sequence

A. Göbel^{1, 2}, E. Lohmüller¹, D. Wagenmann¹, N. Kohn¹, M. Hofmann¹, J.D. Huyeng¹, R. Preu^{1, 2} ¹Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany ²University of Freiburg, INATECH, Emmy-Noether-Str. 2, 79110 Freiburg, Germany Corresponding author: alexander.goebel@ise.fraunhofer.de

Cutting-Induced Edge Recombination

- Shingle solar cells: cut full host cells into sub cells
 - Cut edges: increased recombination rate^[1] $R_{surf} = v_{th} (n_s p_s n_{i,eff}^2)$

- $\int_{E_{v}}^{2} \int_{E_{v}}^{\sigma} \frac{D_{it}(E) dE}{\frac{n_{s} + n_{1}(E)}{\sigma_{p}(E)} + \frac{p_{s} + p_{1}(E)}{\sigma_{s}(E)}}$
- Lowering conductivity near the edge (emitter window)^[2, 3]
- Implementing a field barrier for $n_{\rm s}$ or $p_{\rm s}$ (field effect passivation, PET)^[4, 5]
- Reducing defect quantity D_{it} at the edge (chemical passivation, PET)^[4, 5]

Conclusion

- Application of laser ablation of emitter windows
 - Proof of concept for edge passivation behavior
- Improvement of passivated edge technology (PET)
 - Effect on lifetime sample: +75 %
 - Recovery of cutting losses increased by 24 %
 → Up to 80 % recovery achieved

Option 1: Remove Emitter Suppress Current Flow Towards Cut Edge

Experimental Approaches

Option 1	Option 2
As-cut wafer	
Texture & diffusion	
Laser doped selective emitter (optional)	
Laser ablation	
Removal	l rear emitter
Passivation and ARC	
Laser contact opening (LCO)	
Screen printing	
Contact formation	
Cell separation	
PET: ALD + annealing	

Option 2: Dielectrics Field Effect and Chemical Passivation

Emitter Window^[3]

- Laser ablation process
 - Symmetric lifetime samples
 - Ablation on front, rear or both sides
 - Evaluation after passivation
- Ablated regions with increased lifetime
 - Laser process variation
 reveals little effect (not shown here)

- Different positions
- Applied constant f_{abs}
- Lifetime in ablated regions increased
 - Differences due to changed optics of lasered surface
- Ablation removes emitter

Fig. 4: The effective lifetime τ_{eff} is measured from both sides for each field from Fig. 3.

Passivated Edge Technology (PET)^[4]

- FZ-Si lifetime samples and cut shingle cells
- Coating Al₂O₃: plasma enhanced atomic layer deposition (PE-ALD)^[6]
- Annealing: batch oven
- Characterization
 - $- au_{
 m eff}$ by QSSPC
 - *I-V* by cell tester
- Variation of ALD process
 - PE-ALD layers require anneal for high lifetimes
- Reference process^[4]: $\tau_{\rm eff} = 2.1 \, {\rm ms}$
- Adjusted process (same cycle time): $\tau_{\rm eff} = 3.8 \, {\rm ms} \, (+ 75 \, \%)$

Fig. 6: FZ-Si wafer Fig. 7: Stacked shingle cells before running the high throughput ALD reactor.

Fig. 8: The effective lifetime au_{eff} is strongly increased with an enhanced ALD process.

Emitter Windows on Shingle Cells

- Comparison of PERC shingle cells with and without emitter window
 - Advantage in *pFF*: $\frac{\Delta pFF(\text{Host} \text{Shingle})_{\text{with window}}}{\Delta pFF(\text{Host} \text{Shingle})_{\text{without window}}} = 17\%$
- Challenges
 - J_{sc} loss 0.24 mA/cm²: optics + less emitter area
 - Alignment: metal + cutting

Fig. 5: Two shingle cells side by side with the emitter window after cutting using thermal laser separation (TLS).

Effect of Improved ALD Process on Cells

- Cells cut by thermal laser separation (TLS)
- Gain of PET improved by 24 %
- Relative improvement less than on lifetime samples
- PET achieves recovery of up to 80 %

by the German Bundesta

A. Richter, PhD Thesis, Universität Konstanz, 2014.
 S. W. Glunz, et al., IEEE, 2002, DOI: 10.1109/PVSC.2002.1190556
 E. Lohmüller, et al., Patent, 2018, DE 10 2018 123 484
 E. Lohmüller, et al., Patent, 2018, DE 10 2018 123 485
 P. Baliozian, et al., IEEE, 2020, DOI: 10.1109/JPHOTOV.2019.2959946
 E. Lohmüller, et al., Sol. Energy Mater., 2023, DOI: 10.1016/j.solmat.2023.112419

The authors would like to thank all involved colleagues for their support. The activities have been financially supported by:

German Federal Ministry for Economic Affairs and Climate Action within the research projects "GutenMorgen" (FkZ 03EE1101A) and "Liebesbrief" (FkZ 03EE1151A)

