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ABSTRACT: Silicon heterojunction (SHJ) technology is gaining market share in photovoltaics due to its lean process 

sequence, high efficiency potential and low CO2 footprint. Margins for improvement in performance, yield and cost 

are decreasing, while at the same time the benefit of even small gains is growing with production volume. It is therefore 

worthwhile to implement detailed monitoring of process parameters as well as inline characterisation of the cell 

precursors during production. In this contribution, we present an overview of inline characterisation techniques that are 

relevant to SHJ cell production and critically discuss their benefits and weaknesses with the help of some showcase 

examples. We find that inline characterisation is useful at multiple stages of production. Measurements between 

processing steps allow early detection of defective wafers, preventing unnecessary processing. They also permit 

evaluation of the performance of individual manufacturing processes. As one prominent example, we demonstrate the 

generation of highly-resolved thickness maps of the amorphous silicon and transparent conducting oxide layers using 

reflection spectroscopy combined with multispectral imaging, as well as physical and machine learning models. This 

method provides information at an unprecedented level of detail about the layer deposition processes that are at the 

heart of SHJ technology. 
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1 INTRODUCTION 

 

Inline characterisation during the production of silicon 

heterojunction (SHJ) solar cells offers great advantages for 

the manufacturer. Testing the finished cells under opera-

ting conditions is essential in order to discard defective 

ones and sort the rest for tiered pricing and optimal module 

integration. However, characterisation at earlier stages in 

the production line is beneficial, too. Inspecting the 

incoming raw wafers allows defective wafers to be 

rejected, thus saving unnecessary production costs. Cost 

analysis simulations with SCost [1] predict that if a theore-

tical portion of 1% of wafers is correctly identified as 

defective and extracted before metallisation,  20  €ct/kWp 

are saved. If a critical defect is detected even before 

deposition of the transparent conductive oxide (TCO), 

which contains expensive indium, a further 5 €ct/kWp is 

saved. For an annual production of 1GWp, this equates to 

savings of 250 k€. 

Inline characterisation can further assist in process 

monitoring and fine-tuned prediction of final cell 

performance. In this work, we show as examples how an 

inhomogeneity in the chemical composition of the 

texturing bath can be detected by spectral reflectometry 

even before it becomes critical for final cell efficiency. 

The predictive strength of carrier lifetime measurements 

after double-sided amorphous silicon deposition, on the 

other hand, is demonstrated by a good correlation with the 

final cells’ open circuit voltage. 

By combining different tools with sophisticated 

analysis software and machine learning, a detailed picture 

of the critical attributes of SHJ precursors can be formed. 

As a prime example, we present an overview over our 

developed methods for high-resolution thickness mapping 

of the amorphous silicon (a-Si) and TCO layers based on 

reflection spectroscopy and multispectral imaging, as well 

as optical modelling and machine learning. By associating 

these data with the positions of the wafers in the deposition 

trays, we obtain a detailed map of the deposition 

inhomogeneity within the coating machine. 

While literature is available on individual characteri-

sation methods, there is little that gives a comprehensive 

overview of which methods are relevant to the SHJ 

production line and how they complement each other. 

Based on our experience in inline inspection along the 

whole cell manufacturing process and our close collabora-

tion with both in-house SHJ production and industry 

partners, we evaluated a number of dedicated tools and 

methods ranging from established standards to novel 

approaches. Our findings can aid (i) SHJ cell 

manufacturers in deciding which tools could best improve 

their production, and (ii) metrology suppliers in 

identifying wafer quality parameters that are worth 

measuring and where there is potential for further 

improvement of inline characterisation technology. The 

paper aims at bridging the gap between highly technical 

research papers on the topic and superficial reviews, 

targeting readers within the PV community but who are 

not necessarily familiar with either SHJ technology, cell 

manufacturing or inline characterisation. 

 

 

2 SIMPLIFIED DESCRIPTION OF THE MANU-

FACTURING PROCESS FOR SHJ SOLAR CELLS 

 

Figure 1 shows the structure and processing sequence 

of a silicon heterojunction (SHJ) cell. The as-cut wafers 
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Figure 1: Schematic structure and processing sequence of 

a SHJ solar cell 
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are textured on both sides in a series of wet-chemical 

baths. To passivate the surfaces and to form the junction 

for carrier separation, differently doped amorphous silicon 

(a-Si) layers are then deposited on both sides of the wafers 

in a sequence of plasma-enhanced chemical vapor 

depositions (PECVD). As a final step in frontend 

processing, indium-doped tin oxide (ITO) is deposited on 

both sides via physical vapor deposition (PVD) and forms 

transparent conductive (TCO) layers, which encapsulate 

the sensitive a-Si layers and facilitate lateral carrier 

transport to the contact grid. 

In backend processing, the front and back side grids 

are screen-printed. The wafers are then cured to solidify 

the paste and allow it to bond to the underlying surface. 

Finally, the full cells may optionally be laser-cut into half 

cells or even narrower shingle cells.  

 

 

3 OVERVIEW OF INLINE CHARACTERISATION 

METHODS 

 

3.1 The finished cell 

The most important inline characterisation step is mea-

suring the electrical performance of the finished cells 

under standard operating conditions (25°C, 1000 W/m2, 

AM1.5G spectrum). Based on the conversion efficiency 𝜂 

or current at the maximum power point IMPP, the cells are 

binned into quality classes for module integration and 

sorted out in case of severe defects. 

To provide deeper insight into the potential origin of 

reduced cell efficiencies, spatially- resolved cell  

inspection techniques have to be added. For instance, 

electroluminescence (EL) and photoluminescence (PL) 

imaging not only provide detailed maps of local carrier 

lifetime; they can also be compared to separate the effects 

of electrical and optical injection from measured local 

excess carrier density. The line resistance of the grid 

fingers can be isolated via grid-resistance neglecting 

contacting. For bifacial cells, rear illumination and / or 

using chucks of different reflectivity can emulate the 

influence of different types of module integration. 

 

3.2 The as-cut wafer 

Some unnecessary processing can already be spared, 

however, by testing the as-cut wafers before they enter the 

production line to sort out wafers with damage from prior 

transport and handling. Such incoming wafer inspection 

may also include measurements associated with the out-

going quality control of the wafer fabrication line. These 

highly resolved data can help to quantify the influence of 

the raw material on final cell performance. The simulation 

in Figure 2 shows the predicted impact of bulk resistivity 

and lifetime on the final efficiency of SHJ cells. While 

resistivity can be measured on the as-cut wafer, obtaining 

accurate bulk lifetime measurements requires passivation 

of the surfaces. This is already achieved after PECVD of 

the a-Si layers, though, which is comparatively early in the 

production sequence. As such, wafers with low lifetime 

can be sorted out before the deposition of expensive ITO 

and silver-containing metallisation. This is unique to the 

SHJ architecture – others, such as PERC or TOPCon, 

require a late-stage diffusion step that precludes prior 

knowledge of bulk carrier lifetime. With the impact of the 

electrical properties shown by the simulation, taking the 

opportunity to measure them at such early stages provides 

further cost saving potential compared to other 

technologies. 

Apart from analysing the bulk material itself, it is 

equally important to determine the specific mechanical 

properties of the wafers. High-resolution imaging can be 

used to identify broken wafers and those whose shape and 

size are not within the required margins. PL and infrared 

transmission (IR) imaging can localize microcracks that 

cause charge carrier recombination, reduced carrier 

transport and potential breakage of the wafer, even at a 

later stage during production or handling. These methods 

also identify other localized defects, although with modern 

high-lifetime monocrystalline silicon, surface 

recombination is the dominant cause of contrast in PL 

images of non-passivated wafers. 

Wafer thickness and the extent of saw marks can be 

measured via laser triangulation or capacitive distance 

sensors. Wafers that are too thin can result in too low 

absorption or breakage, while thick wafers may exhibit 

reduced charge extraction.  

 

3.3 Characterisation after texturing 

The quality of the individual processing steps can be 

assessed  by incorporating characterisation in between the 

steps and ideally evaluating anomalies in terms of their 

impact on final cell efficiency. The first stage to do this 

would be after the wet chemical cleaning and texturing 

steps. Here, care must be taken to reduce the wafers’ time 

spent exposed to the atmosphere, in order to minimize 

Figure 2: Simulation of efficiency dependence on bulk 

resistivity and bulk lifetime. 

Figure 3: Reflection intensity at 600 nm after texturing. 

Each box-and-whiskers shows the reflectance distribution 

of all the wafers in that slot in the carrier. As the carrier 

lies horizontally in the texturing bath, the slot numbers 

also correspond to positions across the bath. 
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oxidation of the bare silicon. Hence, integration of the 

characterisation equipment into the existing automated 

production line is critical. 

Figure 3 shows a gradient in mean reflection at 600nm 

against the position of wafers in the wet chemical baths. 

These wafers were a subset of the same batch of precursors 

mentioned in Section 3.1. No deliberate variation of 

texturing conditions was intended. Nevertheless, this 

gradient indicates slightly inhomogeneous etching of the 

surface texture across the length of the bath. In fact, OPAL2 

simulations show that an increase in reflection intensity can 

be a direct result of increased planar fraction (Figure 4, 

blue). 

Furthermore, this is predicted to have a proportional 

detrimental effect on the photogeneration current of the 

finished solar cell (Figure 4, orange). However, comparing 

the scales on the Y axes of Figure 4 with that of Figure 3, it 

is clear that no significant loss of performance is to be 

expected from the small variation in the constitution of the 

chemical bath observed in this production. This means, on 

the other hand, that reflection measurements after texturing 

are very sensitive towards texture quality and can serve as 

an early warning system against irregularities in the etching 

process, well before they significantly affect final cell 

performance. 

This measurement has to be done directly after 

texturing, however, as after a-Si and TCO deposition the 

reflection intensity is dominated by the properties of the 

applied layers and no longer shows a clear trend with surface 

texture. 

 

3.4 Characterisation after layer deposition 

As mentioned in the introduction, intermediate charac-

terisation after TCO coating, i.e. before metallisation, has 

high potential for cost savings. Furthermore, at this stage, 

many of the physical properties of the finished cell are 

already fully defined and measurable without the influence 

of the grid. Meanwhile, the quality of the surface texture 

as well as the a-Si and TCO layers can still be evaluated. 

Due to the robustness of the precursors after TCO 

coating compared to earlier stages, handling and exposure 

to the environment can be tolerated at this point, making it 

an ideal place for extensive characterisation in our study. 

In fact, during our recent production of 1500 SHJ cells 

mentioned above, the wafers were transported back and 

forth between cities for characterisation between ITO 

deposition and metallisation. They were stacked with 

separating paper and packed in plastic at atmospheric 

pressure. Their median performance showed no significant 

reduction (see Figure 5). Merely the number of outliers 

increased, which can be attributed to the outer wafers in 

each package, which experienced increased abrasion. 

As surface passivation quality is fully established after 

TCO, measurements of the effective minority carrier 

lifetime τeff are meaningful in terms of cell performance. 

Figure 6 shows the τeff values measured by means of the 

quasi-steady-state photoconductance (QSSPC) technique 

and plotted against the open-circuit voltage (VOC) for the 

same batch of SHJ cells as mentioned above. While VOC is 

recorded on the finished cells, lifetime is measured directly 

after ITO deposition. As expected, a correlation between 

τeff and VOC is visible. However, lateral lifetime 

inhomogeneities, as seen in the inset PL image, are 

generally not detected within the central integration area 

(orange circle) of the QSSPC lifetime tool although they 

do affect cell performance – this explains the strong 

scattering observed in Figure 6. To account for these 

Figure 4: Simulated impact of the planar fraction on the 

reflection intensity at 600 nm (blue) and the resulting loss 

in photogeneration current (orange). 

Figure 5: Effect of transport to an off-site frontend wafer 

inspection system (FWIS) after ITO coating. 

Figure 6: Minority carrier lifetime after PVD vs. open 

circuit voltage Voc of the finished cell. Inset shows a PL 

image of a wafer with damage outside the detection area 

of the QSSPC lifetime tool (orange circle). 
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lateral inhomogeneities, PL images have to be recorded 

and evaluated with machine learning methods or ELBA 

analysis [2]. 

 

 

4 LAYER THICKNESS MAPS 

 

The layers deposited onto the silicon wafer via 

PECVD and PVD are the core features of the 

heterojunction architecture. The 5-20 nm thick amorphous 

silicon (a-Si) layers form the carrier-selective layers that 

enable charge separation after photogeneration, which is 

the basic functionality of a solar cell [3]. They also 

passivate the bare silicon surface, reducing recombination. 

The encapsulating 20-70 nm thick layer of transparent 

conductive oxide, usually indium-doped tin oxide (ITO), 

provides lateral transport to the grid, while at the same 

time allowing light to pass through it as well as protecting 

the delicate a-Si layers underneath. 

Achieving good coverage of these materials with 

optimal and uniform layer thicknesses is essential for the 

performance of the solar cell. Too thin an a-Si layer creates 

not enough of a step in the relevant band, leading to poor 

charge selectivity. Too thick a layer prevents light from 

reaching the absorption region; in fact, the parasitic 

absorption in the a-Si layers reduces the short-circuit 

current density of the solar cell by 0.16 mAcm-2 per 

nanometre thickness [4]. With ITO, a balance has to be 

struck between optical transmission and lateral 

conductivity when choosing the right thickness [5]. 

Furthermore, the rear-side wafer edge is masked during 

ITO deposition, in order to prevent wrap-around and 

consequent short-circuiting of the opposite terminals. An 

optimal width of the exclusion region must be found to 

effectively prevent shunts while maximizing the active 

area of the wafer. 

To fine-tune the processing parameters that determine 

the quality of these critical layers, accurate spatially-

resolved thickness maps would be ideal. A precise, non-

destructive method of determining thin-film thicknesses is 

(spectral) ellipsometry. The technique requires precise 

sample positioning and integration times on the order of 

minutes for clear results, thus only allowing measurements 

at individual spots, rather than maps, and not at inline-

compatible speeds to date. 

 

4.1 Using a physical model to obtain layer thickness from 

reflection spectra 

An alternative approach uses the thickness dependence 

of reflection spectra of the layers [6]. Figure 7, for 

example, shows the variation of the reflection spectrum for 

different a-Si thicknesses. We have developed a method 

for determining the thickness based on the reflection 

spectrum [7]. In this method, an optical model of the layer 

stack is created, and the Fresnel equations are used to set 

up a series of transfer matrices, describing the optical 

transmission and reflection at each interface. With this 

transfer matrix method (TMM), a simulated reflection 

spectrum can be generated based on the optical constants 

and the thicknesses of the constituent layers. The optical 

constants can be determined once for each given material 

using ellipsometry, and the layer thickness can be used as 

a variable to fit the simulated spectrum to a measured one. 

Such reflection measurements can be carried out with an 

inline spectrometer, which yields fast and well-calibrated 

data but is restricted to provide data only along traces [8]. 

 

4.2 Thickness maps from multispectral images 

We have further determined that only a few reflection 

measurements at critical points in the spectrum are 

sufficient to obtain an accurate fit. For an a-Si layer, a 

selection of such discrete wavelengths is shown in Figure 

7 by the coloured vertical lines. Particularly in the UV (at 

365nm) and in the green (520nm), strong variations in 

reflectance occur with changing layer thickness [6]. For 

ITO layers, the variation in the red, green and blue 

channels in the visible spectrum is sufficient. 

This enables us to use multispectral imaging to obtain 

highly resolved reflection data in the wavelengths required 

for thickness determination. The method works by 

recording multiple images in quick succession, each 

illuminated by narrow-band LEDs of different peak 

wavelengths. The pixel values are calibrated to reflection 

intensities using a photospectrometer, and all unique 

combinations of the different wavelength intensities are 

fitted to thickness values, creating a lookup table. With this 

table, a detailed thickness map can be computed in 

minutes. 

Figure 8 shows a thickness map of the a-Si layer stack 

generated by this method [6]. For demonstration purposes, 

wafer chips were placed onto the sample during the 

coating process to prevent a-Si deposition in certain 

patches. They were removed at different times during the 

Figure 7: Dependence of the reflection spectrum on a-Si 

layer thickness. The discrete wavelengths used in 

multispectral imaging are indicated by the vertical lines. 

Figure 8: Thickness map of the a-Si stack on a SHJ 

precursor, determined via inline photospectrometry and 

multispectral imaging. The dark patches were covered by 

wafer chips for different durations during PECVD, 

resulting in different amounts of a-Si deposition in those 

areas. 
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process, leading to different coating thicknesses in the four 

patches. The thickness variation is clearly visible in the 

image. The top-right patch shows an overlap of two 

misaligned, partially coated squares. This is due to the 

covering chip having moved during deposition. The 

sharpness of the transition between the patches and the 

surrounding coated area is limited not by the spatial 

resolution of the measurement but by the vapor creeping 

in between the sample surface and the covering chips 

during deposition. Comparisons with ellipsometry data 

show excellent accuracy of the method [6]. 

 

4.3 Fast and robust prediction of thickness maps with 

machine learning 

Taking a few minutes to calculate thickness maps from 

multispectral images is still not fast enough for real-time 

inline processing. Furthermore, systematic errors such as 

those due to inhomogeneous illumination cannot easily be 

eliminated by some fixed calibration routine, as their 

magnitude and position with respect to the wafer depend 

on its positioning within the tool: there is significant 

coupling between the wafer and the illumination dome, as 

light bounces between the two multiple times before 

hitting the camera. 

We addressed these issues by developing a machine 

learning algorithm for fast prediction of layer thicknesses. 

Our current algorithm has been developed for ITO; a 

corresponding one for a-Si is in development. The 

algorithm is based on a physics-informed convolutional 

neural network, which is trained on synthetic image data 

with both random and systematic errors added to them. 

This approach allows a large volume of training data to be 

used and results in a robust algorithm that is suitable for 

real-time inline use. It is not only able to create accurate 

thickness maps of the deposited ITO layer within one 

second per wafer, but it also accurately and precisely 

detects the wafer edge and characterises the ITO exclusion 

region [9]. 

Such an edge exclusion evaluation is shown in Figure 

9, where a detailed map of the ITO thickness gradient is 

shown for each of the four edges. From this analysis, we 

can clearly see for this particular example wafer that there 

are some sections along the top and right edges that are 

only partially masked. These could lead to shunts. The fine 

spatial resolution not only reveals unevenness in the mask 

edge, which causes local fluctuations of the exclusion 

width, but also a misalignment of the mask, which is 

visible in this example by the left and bottom edges having 

a wider average exclusion region than the top and right 

edges [9]. 

We used our machine learning algorithm to generate 

high-resolution thickness maps of the ITO layer on ~900 

wafers of the aforementioned experiment. Associating 

these maps to the positions of the wafers in the PVD 

chamber can be used qualitatively to monitor the 

uniformity of the deposition within the chamber. Figure 10 

shows the mean thickness map for each position on the 

deposition tray. Averaging over ~30 maps per position, 

random inhomogeneities and effects of other processing 

steps are cancelled out, and localised deposition density is 

clearly visible. 

This example shows a clear variation along the X axis. 

The highest thickness is deposited in two stripes close to 

the left and right edges of the tray, with minima in the 

middle of the tray and at the outermost edges. Note that the 

polygonal shape visible in the top-left corner of each 

image is a lens artifact of our setup; the problem has since 

been addressed. 

 

 

5 OUTLOOK 

 

Modern SHJ cell production has reached levels of 

reproducibility such that the spread of efficiencies is low, 

see Figure 11. It is no longer enough to record one 

statistical datapoint for each wafer with each measurement 

tool. We have seen for the evaluation of a-Si and TCO 

layer thicknesses that spatial information is crucial to 

further improve the characterisation of anomalies. The 

only significant difference between the left-hand-side and 

the right-hand-side PL images inset in Figure 11 is the 

local horizontal dark areas, likely due to damage of an 

underlying layer. Yet they correspond to wafers on 

opposite ends of the 𝜂 distribution, so it is important to 

identify such defects (and many more subtle ones) 

automatically. 

Figure 9: Edge exclusion mapping using multispectral 

imaging and machine learning. 

Figure 10: ITO thickness maps vs. position in the 

deposition tray. 
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Fortunately, we can use machine learning for such 

tasks, which we have already applied to the layer thickness 

mapping (Section 4.3), and which we are currently 

developing further for other characterisation techniques. 

And such methods have great impact when the defects are 

visible early in the production sequence. In the example in 

Figure 11, the top row of images was recorded after PVD 

of the ITO layer, i.e. before metallisation. 

It will require such early measurements of spatialy-

resolved precursor parameters combined with sensitive yet 

robust machine learning algorithms in order to further 

reduce processing costs by sorting out such wafers, as 

discussed in the Introduction. The development of such 

methods is ongoing. 

 

 

6 CONCLUSION 

 

In conclusion, there are numerous inline characterisation 

techniques that provide valuable quality assurance and 

thus enable efficient process development in silicon 

heterojunction solar cell production. Precision of these 

techniques is high enough that they are able to resolve the 

small differences remaining in the quality of cells in 

modern manufacturing. They can be combined to produce 

detailed quantitative maps of wafer and cell parameters, 

and they can help to predict final cell performance early in 

the production line as well as to monitor and improve 

individual processes. 
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Figure 11: Efficiency distribution for our recent industrial 

production of SHJ cells. Inset: PL images of a wafer with 

η = 21.70 % (left) and one with η = 23.06 %. Top 

images were recorded after ITO PVD, bottom ones on the 

finished cells (after metallisation). 


