Rapid Quantification of Light Trapping in Bifacial Silicon Solar Cells Based on Inline Reflection Measurements

Wilkin Wöhler¹, Andreas Fell¹, Johannes Greulich¹, Andreas W. Bett^{1,2}

¹ Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany ² University Freiburg, Physics, Hermann-Herder-Straße 2, 79104 Freiburg, Germany

Contact: +49 761 4588-5075, wilkin.woehler@ise.fraunhofer.de

Introduction

- Analytical light trapping model of solar cells by Basore¹ and extensions^{2,3}
 - Reflection R, transmission T and parasitic/active absorption pA/A
 - Suitable for common silicon based solar cells
- Fits to simple reflectance spectra suffer from overfitting
- Fits including information on *R* and *T* more stable and robust⁴ \Rightarrow Inline measurements with direct model fits feasible

Effective Optical Light Trapping

- Light absorption profile required as an input for electrical simulations
 - Used for example in PC1D, Quokka3 or PVLighthouse
- Reflection, transmission and external quantum efficiency (EQE) spectra
 - Information on light trapping at $\lambda > 950$ nm
- Calculation time of numerical fit procedure $t_{\rm fit} \approx 30 \, {\rm ms}$

Inline Measurement Setup

- Stationary detector with moving table
- Measurement wavelengths 360 nm $\leq \lambda \leq 1140$ nm
- Spot width $w_{\rm spot} \approx 2 \, {\rm cm}$ and length $l_{\rm spot} \approx 5 \, {\rm cm}$
- Integration time $t_{int} \approx 50 \text{ ms}$
- Black and white background
 - $-R_{\rm black}(\lambda) \approx 5\%$
 - $R_{\text{white}}(\lambda) \approx 80\%$

 \blacksquare $R_{FS,0}$ and $R_{FS,100}$ together include necessary information on transmission

Example Fit and Inline Parameter Correlations

- Inline reflectance of 100 bifacial SHJ solar cells, M6+, $\eta \in [22.34, 22.54]$ %
- Combined least square fit of effective model to $R_{FS,0}$ and $R_{FS,100}$

Sketch of effective analytical light trapping model originally proposed by Basore¹.

Fit Accuracy Analysis and Choice of Dataset

- Measurement data sets
 - Reflectance and transmittance $\{R_{FS}, T_{FS}\}$
 - Reflectance on black and white backgrounds $\{R_{FS,0}, R_{FS,100}\}$
- 6 sets of free fit parameters and 10 sample from industry and Fraunhofer ISE

Example fit to $R_{FS,0}$ and $R_{FS,100}$ with the corresponding modeled spectra.

Correlations of fit parameters, short circuit- and generation-current J_{SC} and J_{gen} . The transposed elements contain the correlation coefficients.

Results

- Good convergence for all cells
 - $A_{\rm ppp}$ as observed by Fell et al.³, and $R_{\rm int} \approx 0.92$ for diffuse light⁵
- Highest impact on J_{gen} given by parasitic absorption parameter A_{ppp}
- Short circuit current J_{SC} not dominated by light trapping in example batch

Application

Compressed information for inline modeling and characterization

Correlation of "fit-quality" with "EQE-accuracy". Markers indicate cell type while colors distinguish sets of free parameters. Fits to $\{R_{FS}, T_{FS}\}$ on the left side, and to $\{R_{FS,0}, R_{FS,100}\}$ on the right side.

- 98th percentile of $|\vec{Y}_{meas} \vec{Y}_{model}|$ as measure of deviation
- Correlation of "fit-quality" with deviations in EQE
 - \Rightarrow Two reflection spectra on black and white background constrain fits well

Conclusion

 \rightarrow Analytical chuck extension for light trapping models introduced \rightarrow Stable model fits for reflectance on black and white backgrounds \rightarrow Method validated on 100 bifacial silicon heterojunction solar cells \rightarrow Possible application as input of inline characterization and digital twins

References:	Supported by:	This work was supported by the German	link to Fraunhofer ISE contributions of the 40th EU PVSEC	2
2 R. Brendel et. al., "Theory of Analyzing Free Energy Losses in Solar Cells." <i>Applied Physics Letters</i> , 2008.	Federal Ministry for Economic Affairs	Federal Ministry for Economic Affairs and	https://ise.link/eupvsec2023	
3 A. Fell et al., "Modeling parasitic absorption in silicon solar cells with a near-surface absorption parameter," Solar Energy Materials and Solar Cells, 2022	and Climate Action	Climate Action within the projects "SALSA" (03FE1096A) and	(available as of 20.09.2022)	į.
4 W. Wöhler et al., "Analyzing light trapping spectra including secondary reflections on the surrounding ," to be submitted, 2023 5 E. Yablonovitch, "Statistical ray optics," Journal of Optical Society of America, 1982	on the basis of a decision by the German Bundestag	"KISS-PV" (03EE1129A).		5