Reducing Shading Effects in CPV Solar Cells with Advanced Contact Finger Design

T. Schweigstll, O. Höhn, L. Stevens, A. Lebowski, M. Steiner, F. D. Heinz, R. Müller, P. Schygulla, F. Dimroth
Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany

Introduction
- Motivation: Reducing finger shading losses in III-V solar cells [1]
- Goal: Reflecting light from dedicatedly shaped fingers into active cell area

Two approaches:
1. Optimized contact fingers:
 - With trapezoidal finger cross section
2. Cloaked metal fingers:
 - Polymeric scaffold with Ag coating to cloak the finger

Summary
- Two approaches to reduce shading caused by contact fingers in solar cells:
 1. Optimizing finger cross section to a trapezoidal form to partially redirect incident light. **Shading reduction of 23 %**
 2. Introducing cloaked metal fingers (CMF) with a triangular cross section for efficient light redirection. **Shading reduction of 60 %**
- These approaches are promising pathways to increase the performance of high efficiency multi-junction concentrator cells.

1. Optimized Contact Fingers

Concept
- Light redirections depend on geometrical shape of the finger
- Most suitable cross section geometries:
 - **Trapezoidal** (top width): Realizable by photolithography (PL) masking and physical vapor deposition (PVD) metallization
 - **C-frame**: Ideal, yet technically hard to implement

Process Sequence

Characterization: Scanning Electron Microscope (SEM) and Simulation

Results
- Simulations reveal optimal finger conditions for highest conversion efficiency: top width < 1.5 µm and cross-sectional area > 10 µm².
- Iterative experimental optimization achieves superior finger geometries surpassing target parameters.
- Microscopic images provide quantitative proof of incident light redirection to active cell areas.
- At the cell level, the optimized fingers reduce shading by 23 % compared to reference fingers (3 µm top width, 6 µm bottom width).

2. Cloaked Metal Fingers (CMF)

Process Sequence

Characterization: Scanning Electron Microscope (SEM)

Results
- Proof of concept: Complex microstructures built with a polymeric scaffold, coated with silver for redirecting light onto the active cell area.
- Resulting cross-sections: Triangular with steep angles, optimizing reflection properties.
- μLBIC measurement shows CMF reduce shading by 60 % compared to reference fingers (3 µm top width, 6 µm bottom width)

Contact details: Tadeo Schweigstll, Fraunhofer Institute for Solar Energy Systems ISE email: tadeo.schweigstll@fraunhofer.de | phone: +49 761 45880-5541
Funding: This work was supported by the German Federal Ministry of Economic Affairs and Climate Action (BMWi) within the project S0FPre (O3B1606).