Perovskite Top Solar Cell Development for Monolithic Silicon-Based Tandem and Triple-Junction Solar Cell Application

Patricia S. C. Schulze¹, Özde Ş. Kabakli¹, Minasadat Heydarian^{1,2}, Maryamsadat Heydarian¹, Oussama Er-Raji^{1,2}, Kaitlyn McMullin¹, Johanna Modes¹, Raphael Efinger¹, Oliver Schultz-Wittmann¹, Christoph Messmer^{1,2}, Luis Restat^{1,2}, Alexander J. Bett¹, Oliver Fischer^{1,2}, Leonard Tutsch¹, Martin Bivour¹, Martin C. Schubert¹, Martin Hermle¹, Stefan W. Glunz^{1,2}, Juliane Borchert^{1,2} ¹ Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany ² INATECH, University of Freiburg, Emmy-Noether-Str. 2, 79110 Freiburg, Germany

contact: patricia.schulze@ise.fraunhofer.de

Introduction

- Goal: Reduce levelized costs of electricity by increasing efficiency with multijunction solar cells
- Perovskite as partner for silicon enabling high efficiency, tunable bandgap, cheap fabrication
 Presented: Recent research on

perovskite top solar cells for Si-based tandem and triple-junction devices

Monolithic Perovskite Silicon Tandem Solar Cells

Current Density >20 mA/cm² for Tandem Devices with Planar Front

ITO process and thickness optimization^[3] as well as addition of a LiF interlayer between $Pero/C_{60}$ yields +0.9 mA/cm² and +82 mV.^[4] Currently more stable interlayers such as AIO_x deposited by ALD are under investigation.

Hybrid Route for Industrially Relevant Textured Tandems

Organic additive in 2nd step solution and optimization of the 2PACz deposition and SnO_x layers yields + 1.3%_{abs} PCE.^[6] Currently hybrid route upscaling is under investigation.^[7]

S.P. Philipps, A.W. Bett, Advanced Optical Technologies, 2014.
Mi. Heydarian et al., Solar/RL, 2023.
C. Messmer et al., Progress in Photovoltaics, 2021.
G. Kabakli et al., under preparation, 2023.

INATECH MANITU

[5] N. Tucher et al., Optics Express, 2019.
[6] O. Erraji et al., under preparation, 2023.
[7] O. Schultz-Wittmann et al., WCPC-& Proceeding, 2022.
[8] Ma. Heydarian et al., ACS Energy Letters, 2023.
[9] Federal Ministry for Economic Affairs and Climate Action

Monolithic Perovskite Perovskite Silicon 3J Solar Cells

- One-step spincoating route with antisolvent method for middle and adapted spincoating with gas quenching for top perovskite absorber^[8]
- $Cs_{0.05}(FA_{0.90}MA_{0.10})_{0.95}Pb(I_{0.95}Br_{0.05})_3$ with lead excess → 1.56 eV and $Cs_{0.05}(FA_{0.55}MA_{0.45})_{0.95}Pb(I_{0.55}Br_{0.45})_3$ with lead excess → 1.83 eV
- Triple-junction baseline for material screening established

Using 15 nm ITO recombination layer and 2PACz hole contact yields +2.0 mA/cm² and +50 mV.^{I®} Moreover ITO serves as improved solvent barrier. Currently optimization of current-limiting middle cell perovskite is under investigation. Future work targets textured triple-junction solar cells.

Recent Lab-Sized Tandem and Triple-Junction Solar Cell Results at Fraunhofer ISE (Forward and Reverse Scan)

Fraunhofer ISE (Forward and Reverse Scan) *different grid shading for devices						
Device Type	Area [cm²]	V _{oc} [mV]	j _{sc} * [mA/cm²]	<i>FF</i> [%]	РСЕ [%]	Stab. <i>PCE</i> [%]
Perovskite silicon tandem junction solar cell (planar)	0.25 _{d.a.}	1847 1846	20.3 20.3	76.9 76.9	28.8 28.8	28.8
Perovskite silicon tandem solar cell (textured)	1.0 _{d.a.}	1903 1903	20.1 20.1	78.7 78.5	30.0 30.0	30.0
Perovskite perovskite silicon triple-junction solar cell (planar)	1.0 _{d.a.}	2862 2868	8.9 8.9	77.9 78.1	20.0 20.1	20.0

Perovskite solar cell processing can be successfully adapted for the use on planar and industrially µm-sized textured silicon bottom solar cells for tandem and multi-junction application. Besides optimum choice of perovskites, opto-electrical optimization of selective contacts and electrodes is key to unlock the efficiency potential.

This work was partially supported by the Fraunhofer Lighthouse project MaNiTU, the European Union through the Horizon Europe project Triumph (101075725), and the German Federal Ministry for Economic Affairs and Climate Action within the project RIESEN (03EE1132A).