Perovskite Top Solar Cell Development for Monolithic Silicon-Based Tandem and Triple-Junction Solar Cell Application

Patricia S. C. Schulze1, Özde Ş. Kabakli1, Minasadat Heydarian1,2, Maryamsadat Heydarian1, Oussama Er-Raji1,2, Kaitlyn McMullin1, Johanna Modes1, Raphael Efinger1, Oliver Schultz-Wittmann1, Christoph Messmer1,2, Luís Restaf1,2, Alexander J. Bett1, Oliver Fischer1,2, Leonard Tutsch3, Martin Bivou3, Martin C. Schubert4, Martin Hermle1, Stefan W. Glunz1,2, Juliane Borchert1,2

1 Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany
2 INATECH, University of Freiburg, Emmy-Noether-Str. 2, 79110 Freiburg, Germany
contact: patricia.schulze@ise.fraunhofer.de

Introduction

- **Goal:** Reduce leveled costs of electricity by increasing efficiency with multijunction solar cells
- **Perovskite as partner for silicon enabling high efficiency, tunable bandgap, cheap fabrication
- **Presented:** Recent research on perovskite top solar cells for Si-based tandem and triple-junction devices

Monolithic Perovskite Silicon Tandem Solar Cells

- **Current Density >20 mA/cm² for Tandem Devices with Planar Front**
- **One-step spincoating route with solvent method**
- **Cs0.8(FA0.2)1.5PbI3Br0.05** with lead excess $\rightarrow 1.64$ eV
- **Flexible processing allows for fast material screenings**

Hybrid Route for Industrially Relevant Textured Tandems

- **Two-step hybrid co-evaporation/spincoating route**
- **FA0.8Cs0.2PbI3Br0.05** $\rightarrow 1.66$ eV
- **Conformal perovskite films on μm-sized textured Si for high energy yield potential**

Monolithic Perovskite Perovskite Silicon 3J Solar Cells

- **One-step spincoating route with antisolvent method for middle and adapted spincoating with gas quenching for top perovskite absorber**
- **Cs0.8FA0.2MA0.75Br0.05** with lead excess $\rightarrow 1.56$ eV and **Cs0.8FA0.2MA0.75Br0.05** with lead excess $\rightarrow 1.83$ eV
- **Triple-junction baseline for material screening established**

Recent Lab-Sized Tandem and Triple-Junction Solar Cell Results at Fraunhofer ISE (Forward and Reverse Scan)

Device Type	Area [cm²]	V_{OC} [V]	J_{SC} [mA/cm²]	FF [%]	PCE [%]	Stab. PCE [%]
Perovskite silicon tandem junction solar cell (planar) | 0.25 d.a. | 1847 | 20.3 | 76.9 | 28.8 | 28.8
Perovskite silicon tandem solar cell (textured) | 1.0 d.a. | 1903 | 20.1 | 78.7 | 30.0 | 30.0
Perovskite silicon-triple-junction solar cell (planar) | 1.0 d.a. | 2862 | 8.9 | 79.1 | 20.1 | 20.0

Perovskite solar cell processing can be successfully adapted for the use on planar and industrially μm-sized textured silicon bottom solar cells for tandem and multi-junction application. Besides optimum choice of perovskites, opto-electrical optimization of selective contacts and electrodes is key to unlock the efficiency potential.

This work was partially supported by the Fraunhofer Lighthouse project MaNiTU, the European Union through the Horizon Europe project Triumph (101075725), and the German Federal Ministry for Economic Affairs and Climate Action within the project RIESEN (03EE1132A).