Progress on screen-printed metallization by improving the screen manufacturing process with laser technology

A. Nair¹, A. Nägele¹, M. Linse¹, D. Witt¹, S. Kühnhold-Pospischil¹, A. Künkele², S. Wagner², S. Tepner^{1,3}, A. Lorenz¹, A. Brand¹, F. Clement¹ aathira.krishnadas.nair@ise.fraunhofer.de

¹Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg, Germany

²Kissel and Wolf GmbH, In den Ziegelwiesen 6, 69168 Wiesloch, Germany

³Now with ASYS Automatisierungssysteme GmbH, Benzstraße 10, 89160 Dornstadt, Germany

Mitigating the consumption of silver in the metallization process of silicon solar cells by reducing the width of screen-printed front-side contacts is imperative to conserve costs and valuable resources. In this work, we address these challenges and attempt to diminish them by <u>creating screen-openings with laser</u> Integrating laser technology <u>technology</u>. with screen manufacturing could lead to the development of highly precise screens and greater flexibility in the screen structuring process. In this study, an ultraviolet (UV) laser is employed to create openings on either the print or substrate side of the screen. By applying the laser on the print side, we have successfully achieved an opening width of $\approx 12 \,\mu m$ for the printing channel on the substrate side ($w_{ch,s}$). By optimizing the laser parameters, openings smaller than $10\,\mu m$ could also be realized in future experiments, further reducing the usage of silver.

Introduction and Motivation

Screen-printing goals:

Further reduce finger width [1] and save silver

Approach:

process

Structuring of barrier layer by laser ablation instead of the

Results

Laser-structured barrier layer/capillary film

Red zone (*Fig 3b*): Indicates where laser has cut through the barrier layer

Fig. 3: (a) Laser parameter variation test applied on an 18 µm barrier layer (b) Variation in depth Laser-structured screen: substrate side

- Laser with $E_{pulse} = 3 \,\mu J$, $p_{pulse} = 1 \,\mu m$ applied on substrate side of the screen
 - Screen opening created with these parameters

- Optimize screen manufacturing: increase screen lifetime and reduce cost

traditional screen fabrication

UV Laser source UV exposure Positive film **Print side** Print side -Barrier layer— Substrate side Substrate side W_{cb}

Fig. 1: Schematic representation of screen openings created by (a) conventional UV exposure (b) laser process – on the print side of the screen

Conventional method:

- UV exposure with positive film
- No tapering of printing channel
- Restricted flexibility: Cost intensive to change cell layout of the screen, new screen would be required

Laser processing:

- Flexibility to laser any barrier layer material
- Tapering effect can be tuned
- Tunable wires texturization, for
 - improved paste transfer
- Precision: Could be used to create openings between wires

Tapering effect observed from laser - screen interaction

Fig. 4: Laser made opening (a) substrate side, (b) print side, (c) SEM image depicting tapering effect, (d) Finger printed from laser made opening

Laser-structured screen: print side

Narrow opening of $w_{ch.s} \approx 12 \,\mu\text{m}$ realized on substrate side of the screen

Experimental Approach

Laser parameter variation test on barrier layer/capillary film	$\overline{50 \mu m}$ (b)
Laser structuring screen – substrate side	(a) Fig. 5: Laser made opening (a) substrate side, (b) print side
Laser structuring screen – print side	Summary and Conclusion
Screen printing test	
Finger width measurement	Screen opening successfully realized by laser on substrate and print side of screen
Fig. 2: Summary of the experimental plan	First printing tests successfully carried out
[1] S. Tepner, A. Lorenz, 'Printing technologies for silicon solar cell metallization: A comprehensive review', Progress in Photovoltaics,	This work has been supported by the German Federal Ministry of Economic Affairs and Climate Action

Vol. 31, Issue 6, 2023

on under the project name Laser2screen (No.:03EE1100E). We would like to thank our project partner Kissel and Wolf Gmbh for supporting us with the experiments.