Perovskite-Silicon Tandem Solar Cells by Scalable Spray Coating Process

U. Heitmann¹, C. Vannaldeshi¹, O. Er-Raji^{1,2}, O. Schultz-Wittmann¹, B. Grübel¹, <u>J. Bartsch¹</u> and J. Borchert^{1,2} ¹ Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany Phone +49 761/4588-5489, ulrike.heitmann@ise.fraunhofer.de ² Department for Sustainable Systems Engineering, University of Freiburg, Emmy-Noether-Str. 2, 79108 Freiburg

Introduction

- Hybrid process: thermally evaporated Pbl₂/Csl on fully textured silicon heterojunction (SHJ) bottom solar cells
- Table top spray coater: ultrasonic nozzle, **operates in ambient air**
- First sprayed tandem solar cell $\eta = 18.8\%$, in this work improved to 20.7%

Results

I-V Characterization

- Large spread observed, difficult to identify trends
- Best cell at 18.3% after light soaking (20 min): 20.7%
- Biggest limitation due to low FF (64%), strong hysteresis
- Spin coating ref. (after light soaking): 20.7% (fabricated via hybrid route)

Left: I-V results of dilution series. <u>Right:</u> I-V curve of best cell (after 20 min. light soaking)

SEM characterization

Sketch: co-evaporation of inorganic compunds, spray coating of organic solution, thermal annealing

Experimental Approach

Spray process

Substrate:

SHJ bottom cell with spin coated hole transport layer (HTL) + evaporated Pbl₂/Csl scaffold (\approx 500 nm)

<u>Substrate temperature:</u> **Sprayed solution:**

FAI/FABr in EtOH (varied molarity)

70°C

Inhomogeneities in surface morphology observed

SEM top view images of different regions of sprayed perovskite/silicon tandem solar cell

XRD Characterization

- Conversion ratio calculated only used as indicator, affected by many factors!
- No clear trend visible: more complete conversion \neq better cells

Sketched effect of dilution: film dries slower, layer has more time to crystallize

Dilution series

Solution concentration	Dispense rate	FAI/FABr
0.075 M	8.9 µl/cm²	0.095 mg/cm ²
0.065 M	10.3 µl/cm²	0.095 mg/cm ²
0.055 M	12.2 µl/cm²	0.095 mg/cm ²

Left: exemplary XRD scan of sprayed perovskite absorber. <u>Right:</u> relation of conversion coefficient, molarity and efficiency

[1] https://www.finke.com/spraying-system.html

This work was supported by the German Federal Ministry of Economic Affairs and Climate Action (BMWK) under contract number 03EE1086A (PrEsto)