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ABSTRACT:  Diamond wire sawing is the wafering technique which recently replaced slurry-cut wafering, due to 
reduced kerf-loss, lower process expenditures and increased speed. While this technology is successfully used to wafer 
the ingots, it introduces a strong macroscopic saw damage on the surface of the wafers. These saw marks introduce 
artifacts in images recorded by multiple characterization methods which lead to poor quality inspection of silicon wafers 
and solar cells. Instead of a cost intensive update of the implemented measurement systems for the inspection of saw-
damaged wafers, we propose a novel denoising technique of the images of diamond-cut wafers using generative 
adversarial networks. 
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1 INTRODUCTION 

According to ITRPV 2018 [8], diamond wire sawing 
(DWS) [1] is a unique approach to wafering technology 
that has almost replaced slurry-based wafering for both 
monocrystalline and multi-crystalline silicon wafers. 
Diamond wire sawing has several advantages over slurry 
cutting, which include: (i) higher throughput, (ii) lower 
cost, and (iii) cleaner/environmentally friendly slurry 
system. However, these advantages occur only if the 
quality of the cut is as good as or better than slurry-cut [6]. 
Diamond wire sawn wafers show strong saw damage on 
their surface because of the wafering process. Differences 
or problems in the sawing process can cause strong 
inhomogeneities and variations in reflection on the wafer 
surface, which disturb the imaging methods and can cause 
problems in the detection algorithms[3]. In this work, we 
inspect the grain boundary imaging (GBI) system for 
mono-cast and multi-crystalline silicon wafers. Due to the 
inhomogeneities, the grain boundaries are not wholly 
visible which affects the overall characterization. Figure~1 
shows an image example of a diamond wire sawn wafer 
captured by the grain boundary imaging system. Here, one 
can see the artifacts caused by the saw marks on the wafer. 

 

 
Figure~1: Grain boundary image of a DWS wafer with 
zoomed in patch (right) shows the artifacts due to 
sawing damage 

 
Hence our goal is to optimize the grain boundary 

imaging methods for diamond wire sawn wafers that are 
implemented for slurry-cut wafers. We approach this 
problem by digitally removing the saw marks using deep 
learning technologies. Since the noise patterns are 
heterogeneously distributed over each wafer, classical 
image processing techniques are not applicable for 
denoising the diamond-cut wafer images.  

Most machine learning tasks call for supervised 
learning, i.e., training with paired data which consists of 
an input and its true target label. In our case, we would 
need a noisy image with artifacts and a clean image 
without the artifacts of the same wafer. This is unattainable 
because a silicon brick can only be cut into wafers by one 
wafering technology. Hence, we have unpaired data of 
diamond-wire-sawn and slurry-cut wafer images. An 
approach using adversarial training with the help of 
Generative Adversarial Networks (GANs) [2] is used to 
denoise the diamond wire sawn wafer images. In addition 
to the unpaired data, we use an experimental strategy to 
generate paired datasets to aid the adversarial denoising. 

 
2 APPROACH 
 We use the generative power of deep learning models 
to denoise images. Therefore, we develop two approaches 
to overcome the challenges of unpaired data: (a) create 
pairs of noisy and clean wafer images, (b) implement 
machine learning models that work for both, paired and 
unpaired data. For the first approach, two paired datasets 
are generated, a synthetic dataset by inducing fake saw 
marks onto slurry-cut wafer images and an experimental 
dataset by removing the saw damage from the DWS 
wafers by undergoing an acidic texture process. For the 
second approach, a network called “ResidualGAN” is 
implemented which uses adversarial learning to tackle the 
lack of paired data. The generative power of GANs helps 
the network to estimate the heterogenous noise patterns 
and produce noise-free measurements.  
 
2.1 Dataset creation 
 An informative dataset is crucial to train a machine 
learning model. We generate three different datasets: one 
unpaired and two paired, for our denoising task. The 
experimental flow of obtaining the data is shown in 
Figure~2. To create the different datasets, we collected 
400 diamond-cut wafers and 400 slurry-cut wafers which 
are of mono-cast [7] and multi-crystalline material. These 
wafers were sorted out from different points along the 
brick height to provide a variety in data, e.g., different 
grain structures along the height of the brick. The data 
acquisition is explained below based on the complexity, 
from the easiest to the most difficult achievable data. 
 
Unpaired dataset. To create an unpaired dataset, each 
DWS wafer and slurry-cut wafer were measured using a 



grain boundary imaging system. This system records a 
wafer from eight different angles using an LED 
illumination and therefore produces eight images of the 
same wafer. This dataset contains about 2900 images of 
both diamond-cut and slurry-cut wafers each of 400 
wafers. As this dataset is an unpaired dataset, it contains a 
batch of DWS wafer images as the noisy images batch and 
a batch of slurry-cut wafer images as the clean images 
batch as shown in Figure~4 (see Unpaired data). 
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Figure~2: Experimental flow of dataset creation with 
unpaired (marked in gray), synthetic (marked in 
orange) and cleaned (marked in blue) data. The 
processes marked in black are common irrespective of 
the dataset.  

 
Synthetic dataset. The second dataset is a paired data by 
adding synthetic noise to the slurry-cut wafer images. It is 
challenging to synthesize data in such a way that the data 
correspond to the real data. In our case, it is difficult to 
reproduce such saw marks due to its unique and very noisy 
structures across the DWS wafer. To be able to replicate 
the saw marks accurately, the saw marks on the DWS 
wafer were analyzed and reproduced on slurry-cut wafer 
images. Here, we use slurry-cut wafer images because of 
their artifact-free wafer images. An example pair is shown 
in Figure~4 (see Synthetic data). Some sample images 
contain artificial saw mark structures that look more 
curved than the real saw marks. This allows the model to 
denoise not only uniform but also uniquely structured saw 
marks from the DWS wafer images. 
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Figure~3: Process flow of noise synthetization on 
slurry-cut wafer images 

   
 Figure~3 shows how the addition of synthetic to the 
slurry-cut wafer images is performed. First, a mask is 
created that imitates the line-like structures of the saw 
marks. To include some variety in the saw marks for better 
denoising of the noisy wafer images, the lines are slightly 
curved in randomly selected wafer images. The mask is 
multiplied with random normal noise. This masked noise 
is then added and multiplied with the slurry-cut wafer 
images to create a synthetic DWS wafer image. The 
original slurry-cut wafer image that is used to create the 

synthetic DWS wafer image is the corresponding clean 
label. 
Cleaned dataset. An additional paired dataset, called the 
cleaned dataset, is generated within an experimental set-
up. After recording grain boundary images of diamond-cut 
wafers, the wafers undergo an acidic texture that etches 
away the saw marks from the wafer surface. Once the saw 
marks have been removed, the wafers are measured again 
with the grain boundary imaging system to generate the 
cleaned diamond-cut wafer images. In Figure~4 (see 
Cleaned dataset), one can see that the grains on the DWS 
wafer image look slightly different from the wafer image 
after surface cleaning. This is due to the change in the 
optics of the wafer surface related to the texture process.  
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Figure~4: Example pairs of unpaired (left), synthetic 
(middle) and cleaned (right) datasets 

 
2.2 Machine learning models 
 The diamond-cut wafers are denoised using an 
advanced deep learning approach. A generative 
adversarial network (GAN) is a network used for training 
with unpaired data by using adversarial training. It consists 
of a generative and a discriminative network that try to 
outplay the other during training. The generator tries to 
fool the discriminator by generating realistic images while 
the discriminator tries to classify the generated image as 
real or fake. In our work, we investigate our adversarial 
model called ResidualGAN shown in Figure~5. The goal 
of this model is to generate a clean DWS wafer image, 
which contains the content of the DWS wafer but has a 
slurry-like surface. 
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Figure~5: Schematic of our Residual GAN training 
architecture; (*) ℓ1 loss is optional: included for paired 
datasets, excluded for unpaired datasets 

  
 ResidualGAN uses a convolutional neural network, 
namely, a U-Net [3] in the generator network. U-Net was 
initially developed for image segmentation but has been 
extended to other tasks. The generator network of the 
ResidualGAN learns the noise, i.e., the saw marks and 
subtracts them from the input DWS wafer image to 



generate the denoised image. To optimize the generator in 
this model, a discriminator loss is used. The discriminator 
is trained on both generated “clean” DWS wafer images as 
well as slurry-cut wafer images. This allows the 
discriminator to distinguish between a generated and a real 
image. 
 Given a generated input from the generator, the 
discriminator categorizes the image as real or fake. This is 
fed back to the generator which tries to improve depending 
on the discriminator’s outcome. If the discriminator 
correctly classifies the generated image as a fake one, the 
generator will try to create more realistic images than the 
previous one. On the other hand, if the discriminator 
classifies the image as real, it implies that the generator is 
successful at creating slurry-like DWS wafer images. The 
generator gets better with time at generating slurry-like 
DWS wafer images. When training this network with 
paired data, an additional loss function, here l1 loss, is used 
along with the discriminator loss to optimize the generator.  
 
3 EXPERIMENTAL 
 To achieve the goal, different experiments have been 
conducted. The implemented model is trained with each 

dataset and tested on real data, i.e., grain boundary images 
of diamond-wire-sawn wafers. Following the original 
GAN paper [2], the discriminator D and generator G are 
updated once in every epoch. To reduce model oscillation 
[2], we follow Shrivastava et al’s strategy [5] and update 
the discriminator using a history of 50 previously 
generated images rather than the ones produced by the 
latest generators [9]. Both the generator and discriminator 
are optimized by using the Adam optimizer [4] with their 
learning rates set to 0.0002 for a stable training. In every 
experiment, the model is trained for a total of 100 epochs. 
An epoch indicates a round through the entire dataset by 
the machine learning algorithm.  
 The results from each experiment are shown in 
Figure~6 and discussed below. For each test, eight DWS 
wafer images recorded with the grain boundary imaging 
system are selected. These images are denoised with each 
trained model. To understand the results better, the grain 
boundaries are extracted from the denoised images using a 
grain boundary detection model that was trained on slurry-
cut wafer images. Each column shows three of the eight 
denoised images and their detected grain boundaries. 
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Figure~6: Results of our ResidualGAN trained on unpaired data (second row), synthetic data (third row) and 
cleaned data (last row) with noisy DWS wafer images (first row); last column shows the detected grain boundaries 
of the third denoised DWS wafer images 



ResidualGAN trained with unpaired data. In the first 
experiment, the ResidualGAN is trained with unpaired 
data using an adversarial loss. The network gets a noisy 
DWS wafer image as the input and is expected to denoise 
the DWS wafer images. Instead of creating clean DWS 
wafer images, it generates unrealistic slurry-like images 
without the grain structures from the DWS wafer. This is  
due to a phenomenon called mode collapse. Mode collapse 
occurs when the generator learns how to generate samples 
from a few modes of the data distribution but misses many 
other modes, even though samples from the missing modes 
occur throughout the training data [4]. An example of the 
generated result is shown in Figure~6 (second row). 
 
ResidualGAN trained with synthetic data. By using an 
additional direct comparison loss function, the 
ResidualGAN is trained with the synthetic dataset. The 
results obtained from this model are better than the ones 
from adversarial training. The artifacts are less intense and 
therefore the detection of their grain boundaries partially 
improves (see third row in Figure~6) when compared to 
the raw diamond-cut wafer images.  
 
ResidualGAN trained with cleaned data. In the 
experiment with cleaned data, ResidualGAN did a better 
job at denoising the wafer images shown in Figure~6 (see 
ResGAN+Cleaned data). The grain boundaries are sharper 
than the ones from the previous test. The reason behind it 
could be that the model was trained on real data instead of 
synthetic or unpaired data which makes it easier for the 
model to transfer to real data.  
 
 To evaluate the models, a similarity metric called 
SSIM (Structural Similarity Index Measure) [5] was used. 
It measures the similarity between the real and generated 
clean images based on luminance, contrast and structure. 
An SSIM value of 0 means that the real and generated 
images do not have any similarity, whereas an SSIM value  
of 1 represents 100% similarity between the real and 
generated images. Our model trained with synthetic data 
achieved an SSIM value of 0.8337 whereas the 
ResidualGAN trained with cleaned data achieved a value 
of 0.9779 which indicates that our model performed 
comparatively better with cleaned data. 
 
4 DISCUSSION 
 Our model ResidualGAN was trained on three 
datasets: unpaired, synthetic and cleaned data. In our first 
experiment, ResidualGAN was trained using unpaired 
data using an adversarial network. The results obtained 
from this training scheme turned out to be unrealistic 
slurry like images, i.e., images with slurry like surfaces but 
no content from the input image. For the second and third 
experiments, we used an additional supervised loss 
function which helped our model to denoise the DWS 
wafer images. The training with synthetic data aided in a 
better grain boundary detection than the noisy DWS wafer 
images. Better results were achieved by training our 
ResidualGAN on the cleaned data. The results show that 
most of the saw marks were removed from the wafer 
images and therefore enables to have a better grain 
boundary detection with these denoised images. Unlike 
unpaired data, the training with the synthetic dataset was 
successful at avoiding mode collapse and generated 
realistic wafer images. On the other hand, the training with 
the cleaned data was successful at denoising the DWS 
wafer images better. 

5 CONCLUSION AND OUTLOOK 
 In this work, we evaluate our model ResidualGAN to 
denoise the images captured with the grain boundary 
imaging system DWS wafer of mono-cast and multi-
crystalline silicon material. For this approach, we have 
successfully generated three kinds of datasets. The easiest 
available dataset is the unpaired data, as no extra effort was 
required to create this dataset. Additionally, we generated 
two paired datasets: a synthetic by adding artificial noise 
to the “clean” slurry-cut wafer images and a cleaned 
dataset by performing a wet chemical process on the DWS 
wafers. Our model generates a denoised image of DWS 
wafers using a combined adversarial and supervised loss 
mechanism. A purely unsupervised training using 
adversarial loss led to a failure called mode collapse which 
led to unrealistic images. 
 Within the scope of this work, we generated training 
data for additional imaging systems: photoluminescence 
and infrared transmission imaging. The denoising task can 
be extended to these datasets. Additional methods are 
being investigated to overcome the challenge of mode 
collapse when training with unpaired data.  
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