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ABSTRACT: Forecasting of PV power essentially relies on forecasting of the solar irradiance. There are different sources 

of irradiance forecasts like numerical weather predictions as well as satellite and measurement-based methods. Those 

different sources are typically combined to derive optimized forecasts for different forecast horizons. To derive PV power 

forecasts on this basis, new machine learning methods are a valuable addition to physics-based simulations. In our approach 

we combine not only different sources of irradiance forecasts but also the physics-based simulations with machine learning 

methods in order to produce optimized PV forecasts for large scale power plants and apply the method on a power plant 

(>800MW) in the Qinghai province of China. This PV power plant is frequently subject to curtailment by the grid operator 

for large power values, which presents a challenge for model training that we address by applying a mix of active power 

control thresholding and a machine learning model trained to detect curtailment in PV power measurements. 
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1 INTRODUCTION 

Forecasting the power output of large PV power plants is 

often attached with significant challenges ranging from the 

presence of different technologies within the power plant 

to external power regulations that effect the power 

production and can have little to do with weather 

situations. We developed a PV power forecasting method 

applied and tested for a power plant of over 800MW 

installed capacity in the Qinghai province of China. Due 

to grid regulations, power plant operators are obligated to 

provide power production forecasts to the grid operator 

and are only allowed to feed in power according to their 

predictions [1]. In cases where the predicted power is 

below what could actually be produced, grid operators 

may apply curtailment, which leads to missed 

opportunities for selling power and, in cases in where the 

produced power is significantly below the predicted 

power, there can be penalty fines that have to be paid to 

the grid operator. This situation creates a demand for 

reliable forecasting.  Due to the nature of the regulation the 

2-hour ahead forecast plays an important role in the 

evaluation of the forecasts. 

Our first approach was a model, that relied on numerical 

weather predictions (NWP) and measurement based global 

horizontal irradiance (GHI) forecasts (persistence) which 

were combined using a regression model to create an 

optimized GHI forecast. This GHI forecast was then used 

as input for a PV power simulation alongside ambient 

temperature data resulting in a power forecast. The method 

is largely based on previous work by Kühnert et. al [2] and 

yielded promising results, we first described the approach 

at the IEEE PVSEC-46 [3]. 

Since then we improved the forecast performance by 

introducing satellite based GHI forecasts and by replacing 

the regression model with a neural network. Instead of 

combining GHI forecasts, we apply PV power simulations 

on the GHI forecasts first and use the neural network to 

combine the power predictions into an optimized PV 

power prediction.  

One of the major challenges to model training is the fact 

that many of the power measurements are affected by 

curtailment. When training a model with respect to power 

measurements, curtailed power creates a bias to 

underestimate the true power output potential, because the 

power plant output is artificially lower than what weather 

and GHI inputs would suggest. We address this challenge 

by both applying curtailment detection methods on the 

training data and therefore removing parts of the dataset 

that would hinder model training, and by adjusting the 

model training loss function such that curtailment artefacts 

that remain undetected within the training data have a less 

severe impact on the resulting model. Both the 

introduction of satellite data, the neural network and the 

curtailment detection improve the forecasting system to 

the point where it can achieve the level of accuracy 

required by the grid regulation. 

 

2 DATA 

 

2.1 On-site measurements 

The Qinghai based power plant has an over 800MW 

installed capacity and contains different PV technologies 

including mono- and bifacial modules as well as tracked 

and fixed orientations.  

GHI measurements were taken with a horizontal standard 

pyranometer and power measurements were obtained for 

the overall PV power output of the entire plant. Both GHI 

and power measurements were in 1-minute resolution, 

which were averaged to 15-minute time series. The grid 

regulation requires forecasts to be in 15-minute resolution.  

Next to the measurements, the on-site available data 

includes Active Power Control (AGC) data, which is a 

signal sent by the grid operator to regulate and curtail the 

power plant. Our curtailment detection methods rely both 

either directly or implicitly on this AGC data. 

The data which our analysis is based on ranges from 

March 2020 to April 2021 and has a few weeks of missing 

data in August 2020. AGC data was available from March 

to Mai of 2020. 

 

2.2 Numerical weather predictions 

In addition to on-site measurements the forecasting 

method relies also on numerical weather predictions. We 

use forecasts by the European Centre for Medium-Range 

Weather Forecasts (ECMWF), which are updated four 

times per day and have a forecast horizon of up to several 

days. To resample the hourly ECMWF values to a 15-

minute resolution, the values are divided by modelled 

clearsky irradiance to compute clearsky indices, which 

then are interpolated to produce 15-minute values. We use 



the clearsky model by Dumortier [4] to model clearsky 

irradiance. Temperature forecasts by ECMWF were used 

as input to the PV simulation method. 

 

 

3 METHOD 

 

The entire PV power forecast procedure consists of several 

methods that are combined and adjusted to form one 

forecasting system. First, we use methods for predicting 

GHI irradiance like measurement-based persistence 

forecasts and satellite-based forecasts. Next, these 

forecasts together with external NWP data are input to a 

physics-based PV power simulation, which are than the 

bases for a neural network combi model. The neural 

network was trained on a dataset that was subject to our 

curtailment detection, which itself consists of an AGC-

based thresholding method or a machine learning model 

for cases in which AGC data is not available. 

 

3.1 Persistence forecasts 

Persistence GHI forecasts (𝐺𝑝𝑓𝑐) are based on both on-site 

GHI measurements and a clearsky irradiance model. 

Given a GHI measurement at time 𝑡 and assuming the 

current weather situation does not change, a persistence 

forecast is computed by multiplying the current clearsky 

index with a clearsky model, 

𝐺𝑝𝑓𝑐,𝑡+1 =
𝐺𝑚𝑒𝑎𝑠,𝑡

𝐺𝑐𝑠,𝑡
𝐺𝑐𝑠,𝑡+1 

with 𝐺𝑚𝑒𝑎𝑠,𝑡 and 𝐺𝑐𝑠,𝑡 being the GHI measurement and 

clearsky model prediction at time 𝑡. Both the irradiance 

measurements and modelled clearsky irradiance are 

averaged to 15-minute resolution time series. 

 

3.2 Satellite based forecasts 

Satellite based GHI forecasts (𝐺𝑠𝑎𝑡) are derived from 

satellite images using the heliosat method [5] and cloud 

motion vectors [6]. We use satellite data in the visible 

spectrum from the geostationary Himawari satellite 

operated by the Japan Meteorological Agency. The 

satellite makes new measurements every 10 minutes, 

which canonically leads to GHI forecasts with a 10-minute 

resolution. The core aspect of the forecasting algorithm is 

the calculation of cloud index information from satellite 

images which in combination with clearsky models 

produces GHI estimations. Using two consecutive 

cloudindex images allows to compute a vector field 

describing the cloud motion between the two images. This 

vector field is referred to as either optical flow or cloud 

motion vectors. Assuming that the cloud movement is 

persistent the vector field is then used to extrapolate cloud 

movement into the future thereby creating cloudindex 

forecasts and ultimately GHI forecasts.  

The cloud motion vectors are computed using the 

deepflow method [7] implemented in the OpenCV library 

[8]. The entire satellite based GHI forecast process can be 

summarized as this, 

 

heliosat(𝐶𝐼 𝑡) → 𝐺𝑠𝑎𝑡,𝑡

deepflow(𝐶𝐼 𝑡−1, 𝐶𝐼 𝑡
) → (

𝑢

𝑣
)

 𝑡 

map (𝐶𝐼 𝑡 , (
𝑢

𝑣
)

 𝑡 

) → 𝐶𝐼 𝑡+1

heliosat(𝐶𝐼 𝑡+1) → 𝐺𝑠𝑎𝑡,𝑡+1

 

 

With heliosat and deepflow being the in [6] and [7] 

described methods, 𝐶𝐼 𝑡 the derived cloudindex at time 𝑡, 

(𝑢
𝑣

)
 𝑡 

 the cloud motion vector and 𝐶𝐼 𝑡+1 or 𝐺𝑠𝑎𝑡,𝑡+1 the 

forecasted cloudindex or irradiance. The forward 

extrapolation in time is done via a simple inverse mapping, 

 

𝐶𝐼 𝑡+1(𝑥, 𝑦) = 𝐶𝐼 𝑡(−𝑢 𝑡(𝑥, 𝑦) + 𝑥, −𝑣(𝑥, 𝑦) + 𝑦) 

 

The resulting 10-minute resolution GHI forecasts are 

resampled to match the 15-minute resolution of the other 

irradiance and power time series. Figure 2 shows an 

example of a satellite image as it is used in the forecasting 

process, the Qinghai region is in the upper left area of the 

image. 

Another approach that we observed with great interest is 

the satellite-based forecasting method by Harty et. al. [9]. 

While our cloud motion vectors used for cloudindex 

forecasting are solely derived from optical flow computed 

from satellite images, they combine optical flow with wind 

vector fields derived from numerical weather predictions 

and compute cloud motion vectors that appear to be 

outperforming the optical flow only forecasts and could 

potentially improve our system as well in future works. 

 

 
Figure 2: Himawari satellite image in visible spectrum, 

image taken on 2021-08-04 00:10 UTC. Satellite images 

like this one are the bases for cloud motion vector and 

satellite irradiance forecasts. Image by Japan 

Meteorological Agency [10]. 

 

3.3 PV simulation 

The first step in creating PV power forecasts is to simulate 

the power plant with different GHI forecasts as input. The 

splitting of GHI into its direct and diffuse components is 

done using the DIRINT model [11] and the conversion 

from horizontal irradiance to plane of array irradiance is 

done using the model by Perez et al [12]. We use the 

implementations of those models from the PVLIB library 

[13]. The models used to derive PV power from plane of 

array irradiance are implemented in-house and are 

described in [14]. 

Since the power plant consists of different technologies 

and configurations the simulation is helped by organizing 

the power plant into suitable sub-plants which are 

simulated independently. The results of those simulations 



are then summed up to describe the entire power plant 

output. We apply this simulation approach on every GHI 

forecast individually so that, for all 𝑠 ∊ {𝑛𝑤𝑝, 𝑝𝑓𝑐, 𝑠𝑎𝑡} 

 

simulate(𝐺𝑠 , 𝑇, 𝜃) → 𝑃𝑠 

 

with 𝐺𝑠 being the irradiance forecast generated through 

method 𝑠 and 𝑇, 𝜃 being the ambient temperature and sun 

angles ie. zenith and elevation. Figure 3 shows the result 

of the PV simulation applied on satellite GHI forecasts 

with a 2-hour forecast horizon. 

 

 

 
Figure 3: Scatter plot of PV simulation and GHI satellite 

data with ambient temperature from ECMWF forecasts. 

We see a spread of power values for similar GHI values, 

this can be explained by them occurring at times with 

different solar angles, which can have a large effect 

especially on parts of the power plant with tracked 

modules. We also see a temperature dependency, as 

illustrated here with different colors. 

 

3.4 Curtailment detection 

Figure 4 shows an example of a day where power 

measurements were likely curtailed, and the curtailment 

was detected through one of our models. Our methods rely 

on either the availability of AGC data to make a direct 

prediction over whether a power measurement was 

affected by curtailment or a prediction is made by a 

machine learning model trained on curtailment 

information, which in turn can have been produced using 

AGC. The actual truth of when the power plants were 

curtailed is held by the grid operator and was in this case 

not known to us. Our curtailment detection method was 

first described in a talk given at PVSEC-30 2020 [15].  

 

3.4.1 Curtailment detection using AGC 

The AGC approach is basically a thresholding approach 

where the difference between AGC and power 

measurement is compared with a fixed percentage of the 

overall installed capacity, 

 

𝐶𝐴𝐺𝐶(𝑃 𝑡) = {
1, |𝐴𝐺𝐶 𝑡 − 𝑃 𝑡| < 1% 𝑖𝑛𝑠𝑡. 𝑘𝑊𝑝
0,                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

with 𝐶𝐴𝐺𝐶(𝑃 𝑡) being a truth value over whether the power 

measurement at time 𝑡 was curtailed. The percentage 

threshold was adjusted through manual inspection. 

 

3.4.2 Curtailment detection using RDF 

In the absence of AGC information the curtailment 

detection relies on a random decision forest (RDF) which 

was trained on labels that were produced by the AGC 

method. Besides both power and irradiance measurements 

𝑃 𝑚𝑒𝑎𝑠 , 𝐺𝑚𝑒𝑎𝑠 the input features used to make RDF 

predictions include simulated power 𝑃 𝑠𝑖𝑚 and clearsky 

index  
𝐺𝑚𝑒𝑎𝑠,

𝐺𝑐𝑠,
 and a set of time series features that are 

derived from those four. We use the Scalable Hypothesis 

method [16] to derive those features, which is a two-step 

process. First, we compute a large set of time series 

features that could potentially be relevant, before rating 

them individually as to how well every feature can predict 

the ground truth curtailment labels. Individual features are 

rated using the Benjamini-Yekutieli procedure [17] and 

because this process produces relevant time series features 

without manual feature engineering, it is often referred to 

as automatic feature extraction. For the feature 

computation we use the implementation from the tsfresh 

library [18] and for the RDF we use the implementation in 

the scikit-learn library [19]. The training set for the RDF 

model was the time range from March 2020 to Mai 2020 

in which AGC data was available. 

 

 
Figure 4: Power and GHI measurements for single day in 

December. There are visible curtailment effects in the 

power measurement which were detected by the RDF 

model. Note that the model was trained on and is therefore 

meant to be used on minute resolution data. 

 

3.5 Model training 

To combine the different power forecasts into a single best 

power prediction we use a densely connected neural 

network consisting of two hidden layers which take as 

input both the three different power forecasts as well as the 

original GHI forecasts and solar zenith angles. The neural 

network is trained to produce complete forecasts, ie all the 

forecast steps are produced by the same network at once. 

The differentiation between forecast steps is achieved by 

adding the forecast horizon as an additional input feature. 

This enables the model to learn weighting satellite, 

persistence, and NWP inputs dependent on the forecast 

horizon. The training is done using Adam optimization 

[20] and we use the network implementation from the 

keras library [21]. Model training was done on the 

curtailment filtered dataset. 

 

3.5.1 Train/test split 

The entire dataset we used for the analysis ranges from 

March 2020 to April 2021, the data used for forecast model 

training ranges from March 2020 to September 2020 with 

everything starting from October 2020 being solely used 

for testing.  

 



3.5.2 Loss function 

We started our forecast model training minimizing the 

root-mean-square-error (RMSE) as a loss function. In the 

regular RMSE, given by 

 

𝑅𝑀𝑆𝐸 = √
1

N
(∑(𝑃 𝑝,𝑡 − 𝑃 𝑚,𝑡)

2

𝑡

 ) 

with 𝑃 𝑝,𝑡 , 𝑃𝑚,𝑡 being the predicted and measured power at 

time 𝑡, over- and underestimations are treated equally. 

However, even with curtailment detection applied on 

training data, there are still issues which can have effects 

on model training. Both undetected curtailment as well as 

simple lack of data in situations with high GHI values, and 

a correlation clearly smaller than one introduces incentives 

for the model training to produce models which tend to 

underestimate the true output potential of the power plant 

for larger GHI values. To mitigate the effect of this tainted 

training data we make an adjustment to the loss function 

of the model training. We introduce a skewed version of 

the RMSE where over- and underestimations are weighted 

differently by preset parameters 𝛼, 𝛽 

 

√
1

N
(𝛼 ∑ (𝑃 𝑝,𝑡 − 𝑃 𝑚,𝑡)

2

𝑡∊Ω 𝛼

 + 𝛽 ∑ (𝑃 𝑝,𝑡 − 𝑃 𝑚,𝑡)
2

𝑡∊Ω 𝛼

) 

 

with 

Ω𝛼 = {𝑡: 𝑃 𝑝,𝑡 < 𝑃 𝑚,𝑡}

Ω𝛽 = {𝑡: 𝑃 𝑝,𝑡 > 𝑃 𝑚,𝑡}
 

and α>β, the exact values for α, β are defined through 

manual inspection. This way the underestimations are 

weighted higher, leading to more impact on the model 

training, which is desired assuming that some of the 

overestimations are caused by curtailment and can 

therefore be accepted. 

 

3.6 Metrics 

In addition to the RMSE as a performance metric we also 

consider the accuracy metric issued by Chinese grid 

operators, which is used to assess and regulate power plants 

in the Qinghai province as well as other provinces [1], 

 

1 − 2 ∑ (|
𝑃𝑝,𝑡

𝑃𝑝,𝑡 + 𝑃𝑚,𝑡
−

1

2
|

|𝑃𝑝,𝑡 − 𝑃𝑚,𝑡|

∑ |𝑃𝑝,𝑖 − 𝑃𝑚,𝑖|
𝑁

𝑖=1

 )

𝑁

𝑡=1

 

 

with 𝑁 the number of values per day and 𝑃𝑝,𝑡 , 𝑃𝑚,𝑡 being 

the predicted and measured power at time 𝑡. The metric is 

used to assess the forecast accuracy of entire days and is 

typically applied on the 2 hours ahead forecast. Only value 

pairs with either the predicted or measured power above 

3% of the installed capacity are considered in the 

assessment. 

 

4 RESULTS AND DISCUSSION 

 

4.1 Curtailment 

The detection of curtailment is an important part of both 

model training and evaluation, as curtailed power 

measurements can introduce strong biases into models 

trained on them. While in the presence of AGC 

information, we prefer using the thresholding method to 

detect curtailed events, our results show that the machine 

learning based RDF method can be a feasible alternative 

for situations without AGC information. Figure 5 shows 

the curtailment detection results for the two methods.  

The dataset is split into two parts, with the first part being 

used as training set for the RDF model and the second as 

test set. Without curtailment detection there is a bias in the 

training set of 9.2% with respect to the installed capacity, 

and 6.2% in the test set. With curtailed datapoints filtered 

out, there remain biases of 1.9% on each of the two parts 

of the dataset, which is a big improvement but also 

suggests that there might be undetected curtailment. 

When comparing the AGC method with the RDF method 

on the part of the dataset where both methods are 

applicable, we find that the AGC method flags 810 of the 

5855 datapoints while the RDF method flags 882 

datapoints, with 633 being flagged by both methods in 

agreement. In total, the curtailment detection process 

removes 15.2% of datapoints in the entire dataset. The 

figure also shows that there is an underrepresentation of 

situations with large power outputs in the dataset. 

 

 
Figure 5: Scatter plots of satellite-based over measured 

power with curtailment detected using the AGC and RDF 

methods. Top: Training set (March to Mai 2020) with 

AGC available. Bottom: Test set (June 2020 to April 2021) 

without AGC available. There appear to be common 

events where power measurements are curtailed to 

200MW, many of which were identified by the curtailment 

detection. 

 

4.2 Forecast accuracy 

The forecasts are evaluated using both the RMSE metric, 

which is widely used, especially in PV power forecasting 

and the daily accuracy metric, which is used in the Qinghai 

province where the power plant is located. Figure 6 

compares power forecasts made from satellite or NWP 

data as well as combi models trained with regular RMSE 



and our skewed RMSE as loss functions for the 

curtailment filtered part of the dataset. Both the skewed 

and regular combi models have learned to reduce the 

scattering while simultaneously introducing a bias towards 

underestimating the power for situations with above 

700MW power output. This can be caused by undetected 

curtailment still being present in the training data and 

because in cases with a correlation < 1.0 the RMSE is 

being reduced by reducing the amount of extreme values. 

The skewed model has learned to be less biased towards 

underestimation for high power values in comparison, but 

also has more overestimations in situations with small 

values. 

 Since the daily accuracy metric is of importance for the 

Qinghai region, figure 7 shows the distribution of daily 

accuracies from the skewed combi model. We find that the 

combi model achieves to meet the 75% accuracy threshold 

requirement in 50.8% of days. It is important to note that 

datapoints that were affected by the grid operator through 

curtailment are to be excluded from this evaluation metric. 

Since it is only the grid operator who knows the exact 

ground truth over curtailment status, their forecast 

evaluation may differ, and our evaluation is meant to 

generate an expectation of what their results could be. 

Detailed evaluations for the different forecast models and 

datasets with respect to both RMSE and daily accuracy are 

shown in table 1 and 2 respectively. Figure 8 shows an 

example of a single forecast for a day with mostly clearsky 

conditions which illustrates the effect of either undetected 

curtailment or underrepresented high irradiance situations 

in the training set on both combi models and how the 

skewed model has learned to mitigate the effect. 

 

 

 

 
Figure 6: Scatter plots of forecasted power over measured 

power for the 2-hour ahead horizon comparing satellite 

and NWP based forecasts with the combi models. 

Note that the Forecast axis do not have equal range on all 

the plots. 

 

 
Figure 7: Distribution of daily accuracy values for the 

skewed combi model evaluated on the entire dataset with 

curtailment filtered out. With 75% accuracy being the 

threshold set by the energy regulation which must be met 

as a minimum requirement in order to avoid being 

penalized for providing insufficient forecasts.  

 

When comparing the model performances on the different 

datasets in table 1 and 2 we find that 

 

• All the models, as expected, have higher RMSE 

values on the dataset that is not curtailment 

filtered. 

• The satellite-based forecast outperforms the 

NWP forecast on the 2-hour ahead horizon. 

• Since the combi models have reduced scattering, 

their RMSE values are lower than the satellite 

and NWP forecasts. 



• The RMSE of the model that was trained on 

RMSE is evidently lowest.  

• Some of the performance differences found with 

respect to RMSE were also found with respect 

to the daily accuracy metric, e.g. both the combi 

models were outperforming the satellite and 

NWP forecasts and that the combi models 

appear to perform better on the evaluation set, 

which indicates fewer curtailment situations 

being present there. 

 

 

Dataset Satellite NWP CombiS CombiR 

T_A 22.7% 23.4% 19.1% 17.0% 

E_A 18.5% 18.9% 14.6% 14.7% 

F_A 21.9% 22.5% 18.3% 16.5% 

T_C 19.3% 20.5% 17.9% 15.0% 

E_C 17.7% 19.3% 15.4% 13.8% 

F_C 19.0% 20.3% 17.5% 14.7% 

Table 1: Results for RMSE metric computed on the 

training dataset (T), the test dataset (E) and the full dataset 

(F) for both the curtailment filtered part of the dataset (C) 

and all the data (A). The RMSE values are normed with 

respect to the installed capacity. CombiS is the combi 

model trained with the skewed RMSE and CombiR the 

model with the regular RMSE.  

 

Dataset Satellite NWP CombiS CombiR 

T_A 65.7% 68.9% 71.0% 73.6% 

E_A 76.7% 77.2% 79.3% 80.5% 

F_A 71.1% 73.0% 75.1% 77.0% 

T_C 64.2% 68.2% 69.0% 72.2% 

E_C 74.3% 74.7% 76.5% 78.1% 

F_C 68.9% 71.3% 72.5% 75.0% 

Table 2: Mean of daily accuracy metric evaluated on the 

same data as in table 1. Both the RMSE and skewed combi 

models outperform the forecasts based solely on satellite 

or NWP data having similar performance improvements 

when compared to the RMSE metric. 

 

 
Figure 8: PV power forecasts computed on a day in July 

2020 compared with the power measurement of that day. 

At the time at which the forecasts were computed both the 

satellite and NWP based methods predicted mostly 

clearsky conditions which for the majority of the day 

turned out to be the case. Despite the optimistic input 

predictions both the skewed and RMSE combi models 

appear to have bias towards underestimating the power 

production with the RMSE combi model being 

significantly more pessimistic. It is precisely this 

pessimistic behavior for otherwise optimistic situations, 

which lead us to introduce the skewing of the loss function 

into the model training. 

 

5 SUMMARY AND OUTLOOK  

 

With machine learning in general relying heavily on clean 

and rich datasets, the absence of reliable clean ground truth 

data makes model training under this condition a 

challenge. Our results show that model training for power 

forecast enhancement is feasible even with curtailment 

issues tainting power measurements and introducing 

biases. Our curtailment detection method was able to find 

many of the curtailed measurements, but the training of the 

model remains to be challenging, especially because the 

dataset gets reduced and not all the curtailment events are 

detected. Through the introduction of a skewed loss 

function that treats over- and underestimations differently, 

the aim of avoiding large underestimations for situations 

with high power values is achieved. However, in this first 

approach it is also related to reduced forecast quality for 

low power values. Further investigations on metrics that 

can reflect model performances under assumed 

curtailment and model training specialized for curtailment 

situations will follow, as will further curtailment detection 

methods, for example, through the usage of uncurtailed 

reference arrays. 
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