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ABSTRACT: Luminescence images of solar cells show material- and process-related defects in solar cells, which are 

relevant for monitoring, optimization and processing. Convolutional neural networks (CNNs) allow the reliable 

segmentation of these defects in images of the solar cells. Nevertheless, the training of CNNs requires a large amount 

of empirical data, in which the defects have to be labeled expensively by experts. We introduce a method allowing 

efficient training by using Smart Labels. We show how this technique can be used for process monitoring to detect 

systematic errors. This approach differs from previous methods, which rely on human heuristics in the form of feature 

engineering or learning-based methods with human-annotated defects. However, this previous approach has some 

limitations and risks. These include label mistakes due to overlapping defect structures, poorly reproducible 

annotations and varying label quality. Furthermore, existing algorithms have to be adapted to new cell lines or a new 

labeling process is required. We overcome these challenges by avoiding the use of human labels and instead perform 

the CNN training on the basis of spatially resolved reference measurements, which allows us to calculate spatially 

resolved labels in less than a second. This purely data-driven approach allows a fast training to quantify defects with 

physical relevance regarding dark saturation current density (𝑗0) and series resistance (𝑅𝑠). The trained CNN achieves 

a precision of 88% and a recall of 91% for 𝑗0 defects while for 𝑅𝑠 defects it attains a precision of 78% and a recall of 

86%. The accelerated training process allows a fast deployment of deep learning models in the solar cell line. 

Keywords: Solar Cells, Luminescence Imaging, Defects, Defect Detection, Deep Learning 

 

 

1 INTRODUCTION 

Material- and process-related defects, as well as 

microcracks, can reduce the potential efficiency of a solar 

cell. The degree of influence depends on the distribution 

and severity of the defects. Quantifying these properties 

in luminescence-based measurements is very helpful for 

both process monitoring and fault analysis. Although 

there are already several attempts for defect detection, 

examples are described below, their process of data and 

label aquisition is often extensive, costly, and potentially 

error-prone. This paper presents an approach for the 

efficient generation of physically relevant defect labels 

and their spatially resolved detection by a deep 

convolutional neural network (CNN) in inline 

measurements. 

Such defects are visible in several spatially resolved 

inline and offline measurement images, some of which 

we use as input or reference images, respectively, and are 

described in the following. In electroluminescence (EL) 

measurements [1], both dislocation structures and certain 

process defects like finger interruptions are visible. In 

photoluminescence (PL) imaging [2], in contrast, mainly 

material defects are visible. With the help of a 

combination of EL and PL measurements, the coupled 

determination of the dark saturation current and series 

resistance (C-DCR) imaging, measurement images can be 

generated which provide a spatially resolved 

determination of the dark saturation current density (𝑗0) 

and the series resistance (𝑅𝑠) [3]. These two 

measurement images have been maily used in research 

and not production, however, Dost et al. show the 

implementation for inline application [4]. In our approach 

we use these measurement images to label defects. In 

other approaches, they are also utilized for the direct 

training of CNNs [5,6]. 

There are several attempts that aim at detecting the 

mentioned defects automatically in inline measurements. 

They are primarily divided into the categories (i) 

featured-engineering relying on human-made filters and 

heuristics and (ii) end-to-end approaches, where the 

defects are found directly in the measurement images 

through machine learned filters based on a large dataset. 

Tsai et al. propose a technique for the detection of 

microcracks and finger interruptions, where Fourier 

transformation is used to filter for the defect-related 

frequencies [7]. In [8] Tseng et al. used the second 

derivation of the rows of an EL image after a region of 

interest (ROI) detection to detect finger interruptions. In 

[9] a new feature descriptor for EL images is presented, 

which describes the environment of pixels within a 

gradient based method by a binary code. They use the 

code for defect detection in form of a clustering 

approach. Similar feature-engineering approaches for 

defect identification can be found in [10] and [11]. 

Regarding end-to-end approaches, a CNN is used in [12] 

to segment different types of microcracks and finger 

interruptions in EL images. In [13] Deitsch et al. compare 

an end-to-end with a feature-engineering approach 

concerning the detection of defective solar cells in 

modules. Chen et al. also show the use of CNNs for the 

inspection of solar cell surface defects visible in photos 

[14].  

All approaches have in common that they are either 

based on human heuristics or require expert labels, 

resulting in two problems, which we aim to overcome: 

1. Expert labels are poorly reproducible, inconsistent 

and depend on the experience of the labeling person. 

2. The adaptation of labels or heuristics to new cell 

processes can be very time consuming and expensive. 

Problem 1. Expert labels are poorly reproducible, 

inconsistent and depend on the experience of the labeling 

person. Alt et al. compared the labels of three trained 

operators who were supposed to sort 30,000 solar cells 

into the categories “ok” or ”non-ok” based on EL images. 

For a total of 4970 cells, at least one operator selected 

category “non-ok”. But for only about 35% of these cells, 
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all three operators agreed on this category. They even 

claim that the label is not always consistent if the 

measurement is presented repeatedly to the same labeler 

[15]. Greulich et al. come to a similar conclusion with 

regard to microcrack labels in luminescence images from 

six different experts. In a recent study, they show that 

microcrack labels of six experts vary considerably and 

none of the experts could find all microcracks in EL 

images [16].  

Problem 2. The adaptation of labels or heuristics to 

new cell processes can be very time consuming and 

expensive. It may be necessary to adjust already existing 

algorithms to other cell processes or to modify them to fit 

a slight process change or modification of the inspection 

measurements, which may lead to an enormous effort of 

renewed labeling. It is not guaranteed that defect 

detection algorithms will also work for updated cell 

processes because there might be a different defect 

distribution and appearance. If algorithms are adapted 

from multicrystalline silicon (mc-Si) to monocrystalline 

silicon cells (Cz-Si), or even to quasi-monocrystalline 

cells, this could lead to a new, costly labeling process. 

To address these problems, we propose a new method 

of label generation that does not have the shortcomings 

mentioned above, which is denoted as Smart Labeling 

within this work. The problem of faulty labels can be 

mitigated by incorporating physical conditions and 

reference measurements into the labeling process. For 

dislocation patterns and finger interruptions, spatially 

resolved offline measurements such as 𝑗0 and 𝑅𝑠 images 

obtained via C-DCR are useful, because the dark 

saturation current density 𝑗0 at dislocations or the series 

resistance 𝑅𝑠 at finger interruptions is significantly 

increased. By defining physical threshold values and 

applying simple image processing techniques, spatially 

resolved defect labels can be generated quickly and 

accurately, which are correspondingly less prone to errors 

and more clearly defined. This automated method of label 

generation enables transferability to other solar cell 

designs, which on the one hand, provides flexibility of 

use and, on the other hand, saves implementation costs 

otherwise needed for expert labels. 

 

 

2 APPROACH 

The approach consists of three parts: (i) Smart Label 

Generation, (ii) Smart Label Prediction and (iii) Smart 

Labels for process monitoring.  

 

2.1 Smart Label Generation 

For the Smart Labeling, 𝑗0 and 𝑅𝑠 images are calculated 

from C-DCR measurements, which are used to derive 

spatially resolved defect labels. Figure 1 shows the 

process of smart label generation. In the reference 

measurements, the 𝑗0 image is shown on the left and the 

𝑅𝑠 image of the same cell on the right. The dark 

saturation current density is increased at material defects. 

At finger interruptions, there is a higher series resistance. 

To calculate the 𝑗0 relevant labels, local variations are 

first smoothed with a Gaussian filter, so that a continuous 

transition from high to low 𝑗0 areas is obtained. 

Subsequently, physical thresholds can be defined within a 

hysteresis-thresholding procedure, on the basis of which 

spatially resolved smart labels can be calculated, which 

are shown in orange. For the 𝑅𝑠 relevant smart labels, 

finger interruptions can be searched by means of 

applying an anisotropic Gaussian filter perpendicular to 

the busbar contacts. The resulting labels are shown in 

green. 

 

2.2 Smart Label Prediction 

The objective is to automatically detect labels derived 

from C-DCR reference measurements in fast inline EL 

measurements. For this purpose, EL images are used as 

input. A slightly modified form of the U-Net [17] is 

choosen to predict the defects. The U-Net has four output 

channels for which it makes the following classifications 

per pixel: (i) 𝑗0 defect (ii) no 𝑗0 defect (iii) 𝑅𝑠 defect (iv) 

no 𝑅𝑠 defect. The integration of the “no defect” channels 

(ii) and (iv) was chosen because the two defects can also 

overlap, e.g., a finger interruption within a dislocation 

pattern.  

 

2.3 Smart Labels for process monitoring 

 Smart Labels can be used for process monitoring by 

superposing the locally resolved 𝑗0 or 𝑅𝑠 defects, 

respectively. During processing, for a certain number of 

the recently produced cells, the detected defects can be 

summed up per pixel (1 = defect, 0 = no defect) and 

divided by the number of samples considered. This 

results in a value between 0 and 1 for each pixel 

describing the frequency of a defect at the location. A 

region with a value close to 1 shows frequent defects, 

while regions with a value close to 0 have hardly any 

defects. Regions with high values thus indicate 

systematic errors that may be process-related, e.g. an 𝑅𝑠 

defect at the same position all the time can indicate a 

systematic error in the printing process.  

 

 

3 EXPERIMENTAL 

The experiments performed are shown in Figure 2. 

There are two columns, Training and Evaluation. Grey 

areas refer to data and cell numbers, blue areas indicate 

measurements, orange areas correspond to image 

processing methods or CNN training and predictions, 

while green areas indicate evaluations, investigations and 

applications. The dataset, also described in [18], comprises 

about 6800 mc-Si and high performance (HP) mc-Si 

wafers from ten different manufacturers and selected from 

 
Figure 1: Schematic visualization of the generation of 

smart labels based on 𝑗0 and 𝑅𝑠 images. 
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different bricks at varying brick positions with regular step 

sizes. The wafers with a size of 156 mm × 156 mm were 

industrially processed to passivated emitter and rear cells 

(PERCs). These were randomly divided into three datasets: 

5500 (about 80%) were assigned to the training dataset and 

650 (about 10%) each to the validation and test dataset.  

All cells described were measured using EL- and C-

DCR imaging. For the EL measurements, we use a system 

by h.a.l.m. elektronik GmbH. The cells were excited with 

10 A, the integration time of the Si CCD camera was 500 

ms and a gain factor of 3 was applied. The following 

settings were used for the three measurement images 

required for C-DCR recorded with a system from ISRA 

Vision AG / GP Inspect with an InGaAs camera under 

illumination with an NIR laser. The measurements were 

aligned, meaning cutting off black edges of the 

measurement images not related to the samples and 

adjusting the image straight, and were finally available as 

single channel images with a resolution of 1024 ×
1024 px2. Based on the procedure described in Section 

2.1, Smart Labels were calculated. 

 A CNN is trained and tested, which receives EL 

images as input and predicts the defects in a spatially 

resolved manner. For this purpose, a slightly modified 

form of the U-Net is used, which has one input and four 

output channels, as described in Section 2.2. The spatial 

size of the input and output channels is 256 × 256 px2, 

thus the EL images, as well as the labels, must be scaled to 

this size. In addition, the EL images are randomly 

augmented during training using vertical and horizontal 

flipping, rotation, brightness and contrast changes, and 

additive Gaussian noise. The Adam Optimizer was used 

for the optimization with a learning rate of 10−3 and a 

decay of 10−5. Furthermore, the learning rate was reduced 

by half during training if the validation loss did not reduce 

within 15 epochs (plateau scheduling). A batch size of 20 

was chosen. Based on the validation dataset, the model 

with the lowest validation loss was selected for further 

testing. 

Three experiments are carried out to show the quality 

and applications of the trained CNN and Smart Labels:  

First, in a quantitative analysis, the spatially resolved 

prediction is investigated using precision, recall, 𝐹1-Score, 

and Intersection over Union (𝐼𝑜𝑈) (see appendix). In 

addition, the instance detection results are evaluated, 

meaning whether or not an instance of a defect structure (a 

defect region disconnected from other defect regions)  has 

been identified. For this purpose, individual separate defect 

structures with a tolerance of ± 20 𝑝𝑥 are considered as 

single instances. This means that an instance is considered 

to be detected correctly if the label pixels match the 

prediction pixels, whereby a difference of either 20 𝑝𝑥 too 

low or too high is tolerated.  

 Second, within a qualitative investigation, example 

predictions are used to show which structures are reliably 

detected and where the prediction deviates from the label. 

 Third, to test the use of smart labels for process 

monitoring, the labels of the validation and test dataset are 

considered. In order to find similar defect distributions, the 

correlation of each 𝑗0 and 𝑅𝑠 label with all other 𝑗0 and 𝑅𝑠 

labels is calculated. Based on the correlation values, (i) 

groups of samples with similar defect distributions are 

identified using K-Means clustering and (ii) the samples 

are represented as points in a low-dimensional embedding 

for visualization. Here, two points are placed closer 

together if they have a high correlation, i.e. a similar defect 

distribution, and further apart if they have a low 

correlation, i.e. very different defect distributions. 

However, the absolute position of the points is not relevant, 

the visualization serves to compare relatively the defect 

distributions. The defects are summed up as described in 

section 2.3 and divided by the number of samples in the 

respective cluster. In this way, it is investigated at which 

positions of the cells defects frequently occur. 

 

 

4 EXPERIMENTAL RESULTS 

Quantitative Analysis. Both 𝑗0 and 𝑅𝑠 defects can be 

found by a CNN with high accuracy. Table I shows the 

prediction results regarding the segmentation, i.e., the 

pixel-wise classification of both defects. The U-Net finds 

91% and 86% of all 𝑗0 and 𝑅𝑠 defect pixels, respectively. 

Especially for the 𝑗0 defects the model is wrong in only a 

few cases, whereas for the 𝑅𝑠 defects a precision of 78% 

an be achieved. A more detailed description of the 

quantities used can be found in the appendix. 

 

Table I: Spatially resolved defect prediction results 

 Precision Recall 𝐹1-Score 𝐼𝑜𝑈 

𝑗0 defects 0.88 0.91 0.89 0.81 

𝑅𝑠 defects 0.78 0.86 0.82 0.70 

 

 If closed defect areas are considered as defect 

instances, it can be evaluated how many of the defect 

instances are detected regardless of their area. The results 

are shown in Table II. Due to the tolerance of 20 𝑝𝑥, a 

certain inaccuracy might be included in the values. 

Therefore, they can be considered rather as a tendency. It 

can be seen that with a recall of 95% many 𝑅𝑠 defects can 

be found. However, since the precision is only 70%, it 

seems that there are still some instances that are wrongly 

detected as 𝑅𝑠 defects. With a recall of 86% and a 

precision of 80%, 𝑗0 defect instances are often detected.   

 

Table II: Defect instance detection results 

 Precision Recall 𝐹1-Score 

𝑗0 instances 0.80 0.86 0.83 

𝑅𝑠 instances 0.70 0.95 0.80 

 

 Qualitative Analysis. A qualitative analysis shows 

that many defects can be reconstructed very accurately and 

most errors in defect prediction are due to minor deviations 

from the labels. Figure 3 shows three predictions in (a-c) 

 
Figure 2: Experimental process. 
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with the corresponding labels in (d-f). Orange contours 

represent 𝑗0 defects, green contours indicate 𝑅𝑠 defects. If 

the prediction in (a) is compared with the label in (d), they 

look very similar initially. Small deviations can be seen, 

for instance, in the upper left corner of the 𝑗0 label or in the 

size of some finger interruptions. The same can be seen in 

(b) and (e). Slight inaccuracies occur for the boundary of 

the dark area at the right margin, which probably results 

from contamination from the edge of the crucible. 

Furthermore, the network seems to find too many finger 

interruptions (centered in the lower half of the cell), which 

is consistent with the results of the defect instances, shown 

in Table II. Yet, upon closer examination of the 

corresponding regions, the prediction is plausible, since the 

structures are similar to typical finger interruptions and 

may occur below the thresholds of the smart label 

generation process. 

 In the pair in (b) and (e) as well as in the next pair in 

(c) and (f) it becomes clear that overlapping defect 

structures can also be distinguished from one another. In 

the large dark regions on the right and on the top, 

respectively, which are expressed as a 𝑗0 defect, there are 

also some finger interruptions located, some of which are 

hardly visible to the naked eye in the EL image. In both 

cases, these are reliably detected. Additionally, all 

examples show overlaps of finger interruptions and 

dislocation areas within the cell, which are identified 

independently. 

 Process Monitoring. Using Smart Labels, process 

monitoring can be performed with regard to the physically 

relevant labels. If the defect predictions of sequentially 

produced cells are superimposed, the frequency of a 

specific defect can be visualized per pixel. This allows for 

systematic errors to be detected. The labels of the 

validation and test dataset were combined to one dataset, 

so that the analysis can be illustrated for about 1300 cells. 

Afterward, the correlation of all 𝑗0 and 𝑅𝑠 labels to all 

other 𝑗0 and 𝑅𝑠 labels are calculated. As described in 

section 3, on the basis of the correlation values a low-

dimensional embedding for visualization was calculated, 

we used multidimensional scaling (MDS) [19], and 

clustering was performed to detect similar defect 

distributions, for this we used the K-Means-Clustering. In 

the MDS, points that are close to each other correspond to 

similar defect distributions and points that are further away 

from each other have very different defect distributions. 

Now, the defect frequencies within a cluster can be 

calculated per pixel. 

 Some similar defect distributions can be found within 

the 𝑗0 relevant smart labels. Figure 4 (a) shows on the left 

side the low-dimensional embedding, where each point 

represents a cell’s 𝑗0 label. The clustering resulted in four 

clusters, and the points are colored accordingly. To the 

right of the color bar, the 𝑗0 defect regions within each 

cluster are superimposed, so that positions, where a defect 

has occured particularly frequently, are brighter. Since 

wafers could be rotated during and before processing, 

similar material defects (represented as 𝑗0 defects) may 

occur at multiples of 90° rotations of the cell. In order to 

have rotational invariance for the 𝑗0 defects, all rotations 

were tested, and the one with the highest correlation was 

selected for superposition, MDS, and clustering. Cluster 2 

seems to have few defects, while the clusters 1 and 4 have 

regions of reduced lifetime due to contaminations from the 

crucible at one or two edges, respectively. Cluster 3 shows 

material defects within the cell. It is noticeable that Cluster 

2 is very elongated, which indicates the limited 

possibilities for the MDS algorithm to represent high-

 
Figure 3: Three predictions with labels for comparison. In (a-c) the predictions of the model are depicted with respect to three 

EL images. In (d-f) the corresponding smart labels are shown. Orange contours stand for 𝑗0, green ones for 𝑅𝑠 defects. 



 
Presented at the 37th European PV Solar Energy Conference and Exhibition, 7-11 September 2020 

 

 

dimensional data, such as spatial defect distributions, in a 

low-dimensional way. 

 A similar result can be seen when considering the 

smart labels for 𝑅𝑠 defects, whose clusters and spatial 

defect distributions are shown in Figure 4 (b). Five clusters 

could be identified, and their associated cells always show 

finger interruptions at certain locations in each cluster. The 

clusters are well distinguishable from each other both in 

the low-dimensional embedding and in the defect 

frequency representations. It is possible that there is a 

problem within the printing process so that finger 

interruptions could always occur at similar locations. Some 

points, especially of cluster 3, could not be positioned 

correctly by the MDS. However, they show a similar 

defect distribution as the points of their respective cluster. 

 

 

5 DISCUSSION 

We have shown that physically relevant and spatially 

resolved, yet binary labels can be generated quickly with 

the method of smart labeling. The technique can be applied 

to new cell lines after only minor adjustment to the 

extraction parameters. Furthermore, they do not depend on 

the experience and daily condition of the labeling persons. 

A disadvantage is that the labels are binary labels so that 

minor defects that fall below the defined thresholds are not 

labeled as defects. Also, no severity of the defects has been 

integrated so far. Furthermore, the approach presented is 

limited to defects related to 𝑗0 and 𝑅𝑠. By integrating 

further offline references such as the one from Teo et al. to 

find microcracks [20], the concept can be extended. 

Another disadvantage is that generally more complex 

measuring methods, such as C-DCR, are required. 

However, these would only have to be carried out once in 

order to train the CNN, so that they could also be executed 

in external laboratories. 

 The defects labeled using offline measurements can 

be learned by CNNs so that they can be detected in inline 

measurement systems. In EL images, several defects 

including 𝑗0 and 𝑅𝑠 relevant defects are visible. With 

correct labels, they can be detected with high reliability 

and speed. This can both extend the characterization of 

the cells and allow process monitoring. The last predicted 

smart labels of a cell line can be superimposed, revealing 

where physically relevant defects occur particularly 

often. This may be due to process errors. In addition, the 

correlation of the smart labels can be viewed so that 

different defect distributions can be identified over a 

longer period of time, which can also provide information 

about process and material characteristics. By identifying 

different defect distribution clusters, it is possible to 

distinguish e.g. material defect distributions from 

crucible contaminations, which might be interesting in 

HP mc-Si and quasi-mono cell processes. 

 

 

6 CONCLUSION AND OUTLOOK 

 We presented a method for quantification and spatial 

segmentation of defects in EL images, which identifies 𝑗0 

and 𝑅𝑠 relevant defects using a CNN, even if they are 

overlapping. Our method achieves a recall of 91% and 

86% and a precision of 88% and 78% for 𝑗0 and 𝑅𝑠 

defects, respectively, although the cells are produced by 

different manufacturers and contain mc-Si and HP mc-Si 

material. We have shown how prediction can be used for 

process monitoring, so that systematic and physically 

relevant defects can be identified. 

 In this paper, we presented the concept of smart labels, 

which allows an efficient training of neural networks for 

defect detection in luminesance images based on spacially 

resolved meaningful reference measurements. This is 

achieved because reliable and consistent spatially resolved 

defect labels can be calculated quickly. Hence, a fast 

deployment of defect detection networks is possible. In 

addition, the labels are physically relevant due to the use of 

reference measurements, which has an advantage over the 

current labeling process by experts, which is often time-

consuming and costly. 

 In further investigations, we plan to integrate a 

prediction of the relevance of the individual defects. In 

addition, we want to show that the technique can be 

extended to other cell processes and investigate how many 

reference measurements are necessary for sufficiently 

accurate detection in inline measurement techniques. Since 

there are more defect patterns and overlapping structures in 

mc-Si than in Cz-Si cells, we assume that the method can 

be applied to Cz-Si cells. 

 

 

7 ACKNOWLEDGEMENT 

 This work was funded by the German Federal 

Ministry for Economic Affairs and Energy within the 

projects “iMage” (0324045A) and “NextTec” 

(03EE1001A). 

 
Figure 4: Application of Smart Labels for process monitoring for 𝑗0 defects in (a) and for 𝑅𝑠 defects in (b). On the left side 

of each diagram a low-dimensional embedding based on the correlations of the 𝑗0 (a) and 𝑅𝑠 (b) defects is shown, the points 

are colored according to the clusters found. To the right of the clusters a superposition of the spatially resolved defects per 

cluster is displayed. Bright areas often show defects at the corresponding locations and accordingly indicate systematic 

faults. 
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APPENDIX 

The following parameters are used to judge the 

prediction quality of the model. If a defect is correctly 

predicted, it is called true positive (TP), if a defect is 

incorrectly predicted, it is called false positive (FP). If a 

non-defect is correctly predicted, it is called true negative 

(TN), if a non-defect is incorrectly predicted, it is called 

false negative (FN). Some quantities can be derived from 

this. The precision is defined in equation (1) and indicates 

how many defect predictions were actually defects. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

The recall, defined in equation (2), is a measure of how 

many defects were found of all defects. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 The F1 score, defined in equation (3), is the harmonic 

mean of Precision and Recall. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 The Intersection over Union (IoU), defined in equation 

(4), is a measure for spatially resolved predictions and 

indicates the ratio of the intersection and union of 

prediction and label. In other words, the IoU is the fraction 

of correctly predicted defect area. 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (4) 

 

 

 

 

 


