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ABSTRACT: Feedback on the material quality of silicon ingots is highly beneficial in the photovoltaic production 

chain. It is crucial for crystal growers to improve the quality and optimize the crystallization process. Moreover, for 

solar cell manufacturers, knowing the quality beforehand helps to sort out the bad quality material thereby reducing 

the costs and enhancing the total yield. Therefore, rating material quality already on the brick level is highly valuable 

for the effective optimization of the value chain in both directions. In this paper, we propose a method to classify the 

silicon bricks based on their electrical quality. Due to our comprehensive data set and feature detection, the model is 

capable to predict the quality of even edge and corner bricks of the ingot. We introduce a novel feature extraction 

method to quantify quality-related features from spatially-resolved microwave-detected photoconductivity (MDP) 

brick measurements. Further, a machine-learning-based prediction model is developed to predict the open-circuit 

voltage (Voc) of solar cells from these features. A comparative analysis for brick quality estimation for inner and 

outer bricks of high-performance multi (HPM) and cast-mono (CM) silicon bricks is provided. The best mean 

absolute error in prediction achieved for HPM and CM materials is 3.1 mV and 4.8 mV, respectively. 
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1 INTRODUCTION 

 

 Early stage material quality assessment is required 

for crystal growers for the development of new material 

classes like smart mono [1]. For cell manufacturers, 

determining the material quality helps in proper material 

selection for cost-effective solar cell production. Crystal 

growers have put continuous effort into the enhancement 

of electrical quality in silicon ingots. This has led to the 

improvement of silicon material quality during 

crystallization and thereby the overall solar cell 

performance. Industrialization and further optimization of 

new crystallization techniques, like smart mono, require 

rapid assessment of silicon ingot quality. 

 In silicon solar cells, the cost of the raw silicon 

wafers dominates the total cost of the finished solar cell 

[2]. Therefore, for the solar cell manufacturers, it is 

important to know the quality of the wafers beforehand to 

discard wafers from low quality parts of the bricks early 

in the production chain. 

 Traditionally in a photovoltaic production chain, 

feedback to the crystal growers is provided based on the 

quality of final solar cell efficiencies. With the help of 

wafer rating models, early prediction of the quality is 

possible [3, 4]. However, dicing the bricks into wafers, 

wafer tracking, and data handling requires additional 

effort, time and expenses. This results in long feedback 

times and complicated feedback loops and thus reduces 

the possible speed of process optimization in crystal 

growth. Thus, such a brick rating model is advantageous 

over a classical wafer rating model. 

 Using the MDP technique for brick characterization, 

it is possible to measure the spatially-resolved carrier 

lifetime and resistivity maps of silicon bricks [5]. MDP 

lifetime measurements are contactless and inline feasible 

and do not require further calibration [6]. The bulk 

lifetime of the material has a significant influence on the 

final solar cell efficiency [7]. As bricks represent semi-

infinite samples with only one surface, lifetime 

measurements on brick level are much less affected by 

surface recombination than lifetime measurements on the 

as-cut wafer stage [8]. Thus, lifetime measurements on 

brick level allow insight into the actual bulk lifetime of 

the material, which is not possible on as-cut wafer level. . 

Therefore, it is possible to estimate the maximum 

reachable efficiency of the material from the carrier 

lifetimes measured on brick level.  

 Earlier, a similar brick rating technique using 

photoluminescence imaging (PL) of the bricks to predict 

the open-circuit voltage of passivated emitter and rear 

cells (PERC) has been proposed in Ref. [9]. Here. the 

harmonic mean of carrier lifetime from brick 

measurements and the dislocations from as-cut wafer 

measurements are used to predict a product of short 

circuit current (Jsc) and Voc for inner bricks only. In our 

study, MDP lifetime measurements are used for the first 

time as basis for a brick rating model. Moreover, both, 

lifetime and dislocations are extracted from brick 

measurements only. Further, we extend this approach to 

outer bricks, which brings new challenges, as the defect 

distribution of the brick measurements does not directly 

reflect the defect distribution in the inner parts of the 

wafer. Therefore, we propose a new estimation of 

lifetime by weighing the harmonic mean from different 

sides of the outer bricks. Special care was taken during 

feature extraction for the outer bricks which are in 

contact with the crucible walls. 

 Overall, the work presents a brick rating model to 

predict the performance of solar cells from brick 

characterization only. Such a brick rating model enables a 

simple and early stage comparison between multiple 

crystallization cycles in terms of their electrical quality 

for both, HPM and cast-mono silicon.   
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2 APPROACH 

   

 Our approach combines a relevant data description of 

the material according to known physical relations and a 

subsequent empirical data model. An overview of our 

three-step approach is shown in the Figure 1. First, using 

MDP technique, we measure spatial lifetime and 

resistivity images from four sides of the brick. Second, 

from the measured brick images, we extract physically 

related features using traditional image processing 

techniques, deep learning network and assign these 

features to individual ingot heights and wafers 

respectively. Third, a machine learning prediction model 

is trained to learn predicting Voc of the solar cells from 

the extracted brick features virtually assigned to the 

individual wafers. Each of the steps is described in detail 

in following Sections. 

 

 
Figure 1: Overview of approach for brick rating model 

 

2.1 Brick characterization 

 For each of the brick, the MDP maps for lifetime and 

resistivity are measured with a resolution of 1 mm on all 

4 brick sides (east, north, west and south). While 

resistivity is measured inductively, lifetime is measured 

by means of the MDP technique using a 900 nm laser for 

excitation with a penetration depth of 500 µm and 

duration of excitation pulse of 1000 μs. MDP lifetime 

and resistivity measurements of an edge brick from all 

four sides are shown in Figure 2 and Figure 3. The 

lifetime distribution of our measured bricks is between 10 

μs and 82 μs. The resistivity of the material varies 

between 1-3 Ω/cm2. 

 

Figure 2: Lifetime measurement (a) east (b) north (c) 

west and (d) south sides of the brick 

 

Figure 3: Resistivity measurement (a) east (b) north (c) 

west and (d) south sides of the brick 

 The measured bricks are wafered and these as-cut 

wafers are processed to solar cells. Each of the solar cells 

is then associated to the respective pixels rows at the 

corresponding ingot height in the MDP brick 

measurements. Detail description of data assignment 

between brick and solar cell is explained in Section 2.4. 

2.2 Feature extraction 

 For each of the brick, we extract the following 

physically related features listed below, 

a) Contaminated side regions 

b) Contamaninated top and bottom regions 

c) Lifetime 

d) Resistivity 

e) Dislocations 

  

 (a) Contaminated side regions: for the bricks in 

contact with the crucible walls, the impurities diffuse into 

the material from brick sides. These regions negatively 

impact the performance of the solar cell and are only 

partially gettered during the cell process [10, 11]. These 

regions have low lifetime values as visible in MDP 

lifetime measurements. Due to their positioning on the 

brick sides, it is possible to distinguish from other 

defects. In Figure 2 (a) and (c), the low lifetime values 

along the vertical edges correspond to contaminated 

regions. From these images, the area fraction of 

contaminated regions (Acont) is extracted as a feature 

using image processing techniques. The calculated Acont 

is normalized between the range of values 0 and 1.  

 (b) Contaminated bottom or top regions: the bottom 

and top parts of the bricks have lower lifetime values due 

to in-diffusion of impurities from the crucible bottom, 

and segregation and back-diffusion of impurities during 

crystallization in the brick top. These regions have a 

different gettering behavior as compared to contaminated 

regions [12]. Therefore, we classify these regions as 

contaminated bottom and top regions during feature 

extraction.    

 The Figure 4 shows an example of extracted 

contamination regions on the sides, marked in yellow 

color and contaminated regions at top and bottom marked 

in orange color. 

 

 
Figure 4: Lifetime images from east, north and west 

sides of an edge brick stitched together and (b) extracted 

contaminated side, bottom and top regions 
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 (c) Lifetime: the lifetime of the material is directly 

proportional to the final performance of the solar cell. For 

inhomogeneous lifetime distributions, it is known from 

literature that the harmonic mean of lifetime HM 

corresponds best to open circuit voltage [13]. Therefore 

we extract the harmonic mean of the individual wafer 

sample from four sides of the brick measurements 

according to equation Error! Reference source not 

found.. 

 

       (1) 
 

where 𝒊 is the lifetime of an individual pixel and n is the 

total number of pixels in the pixel row from four sides of 

MDP lifetime image. 

 However, in case of the edge and corner bricks of the 

ingot, the lifetime images of the brick sides, which are in 

contact with crucible walls, have low lifetime values. 

Such a lifetime image of an edge brick is shown in Figure 

2 (d). According to equation Error! Reference source 

not found., each side of the brick contributes 25% to the 

total harmonic mean. This leads to underestimation of 

harmonic mean since the area of contamination can also 

be less than 25%. Therefore, we propose a weighted 

harmonic mean by (i) identifying regions of reduced 

lifetime due to crucible sides as contaminations and (ii) 

estimating the area of these contaminated regions 𝐴𝑐𝑜𝑛 in 

the inner regions of the wafer. The proposed rating model 

uses the (iii) area weighted harmonic mean, which is 

given according to equation Error! Reference source 

not found.. 

 

                                                                                        (2) 
 
 

where,  𝐴 is the total area of the sample, i is individual 

pixel and c is the set of indices of the measured MDP 

signal in contaminated region and 𝑐̅ in non-contaminated 

regions. 
 

  

 (d) Resistivity: the resistivity of the material is 

influenced by the doping concentration. The base 

resistivity of the material influences the final 

performance of the solar cell depending on the cell type 

[14]. Therefore, from the MDP resistivity images, the 

average resistance of the wafer is calculated. 

 (e) Dislocations: structural defects like dislocations 

have adverse effects on final performance of the solar 

cells [15]. Since the resolution of the brick lifetime 

images is low, it is difficult to extract dislocations using 

traditional image processing techniques. Therefore, we 

trained a deep learning network U-Net, to detect 

dislocations from MDP lifetime images [16]. 

 For training the U-Net, we hand labelled MDP 

lifetime images from 25 bricks. The dislocation pixels in 

the images are manually labelled and pairs of lifetime 

images and labels are used for training. The network is 

trained patch wise by cropping the input images 

randomly to a size of 128 x 128 pixels. We then trained 

the network for 120k iterations and optimize using L2 

loss as in [17] . The network trained can predict the 

dislocations from lifetime images of 128 x 128 pixels. 

Since the MDP lifetime images of the complete brick are 

larger than 128 pixels, patch wise detections are stitched 

together into the complete lifetime MDP image. 

 

 
 

Figure 5: Dislocation detection from two samples. (a) 

Cropped lifetime image (b) detected dislocations and (c) 

hand labelled image.  

 The Figure 5 shows dislocation detection from MDP 

lifetime images of two bricks cropped at different 

regions. The dislocation detection is robust also in 

contrast invariant regions as shown above. 

2.3. Brick rating 

 For the description of each brick segment, extracted 

features and Voc values of the solar cells constitute inputs 

for training a nonlinear random forest (RF) based 

regression model [18] . 

 However, random forest based regression is limited 

to the boundaries of the training dataset predictor values 

and it is not possible for extrapolation in prediction [19]. 

Therefore, we use a hybrid of linear regression and 

nonlinear RF regression models called “Regression 

Enhanced Random Forests” (RERF) as in [20]. 

 In the first step for RERF, a multivariate regression 

model is applied without any regularization. The 

residuals from the regression are calculated for the 

training dataset. Then a RF model is trained on the 

residuals calculated previously for the same input feature 

vector. The final prediction response of RERF for given 

predictor value is given by 

 
where 𝑌̂ is the final prediction, 𝑋0 is the input feature 

vector, 𝛽̂ are the weights of regression model and 𝜆,𝑚, 𝑠 

are hyper parameters. 

 The values for the hyper parameters 𝜆,𝑚, 𝑠 are 0.5, 

0.33 and 5, respectively, according to [21]. 

 

2.4. Exploratory data preparation 

 Missing data: due to the presence of dirt and surface 

irregularities, the signal to noise ratio of the sensor in 

MDP measurement is low. The lifetime in these spots 

cannot be measured and thus a ‘nan’ value is generated. 

These missing values are detrimental during feature 

extraction. Therefore, we interpolate the missing values 
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using the nearest-neighbor values with a grid structure of 

3x3 pixels.   

Data association: we assign each of the pixel rows in 

these images to 1 silicon wafer or solar cell. For example, 

the ith pixel row from all the four sides of the 

measurement corresponds to a solar cell / wafer at brick 

height of i mm. However, adding the kerf loss of 200-300 

µm each wafer of 200 µm thickness corresponds to ~500 

µm in brick height, i.e. ~ 2 wafers originate from 1 mm 

brick length.  We assume that the defect distribution and 

material quality does not differ much between two 

neighboring wafers. To increase the assignment tolerance 

between brick and wafer data, we thus associate 1 

wafer/cell to 1 mm thickness in the brick measurements.  

3 Experimental  

3.1 Experimental data 

 Within our experiment, a comprehensive data set was 

created for model development and evaluation. Our data 

set consists of around 1200 industrial Al-BSF solar cells 

from 19 bricks of HPM and CM from different brick 

positions. Bricks from two different crucible sizes G2 and 

G6 with ingot heights of 200-220 mm for G2 and 300-

320 mm for G6 are present in our dataset. 

 The entire dataset is broadly classified into 4 different 

classes. 19 bricks are divided into two groups HPM all 

bricks and CM depending on the material type i.e. HPM 

and CM silicon. The bricks from HPM material are 

further divided into subgroups HPM inner and HPM 

outer based on their position in ingot. The CM bricks in 

our dataset consist of only 1 inner brick and therefore the 

group is not further subdivided. These different material 

classes along with number of bricks are shown in Table I. 

 In total, 926 solar cells from HPM material and 235 

solar cells from CM material are considered. Solar cells 

whose wafer samples have low lifetime values from 

measured MDP signal are discarded and only the samples 

with weighted harmonic mean of at least 7 μs are 

considered in our experiment. 

 

Table I: Dataset, number of bricks/cells of different 

material types 

           HPM       HPM           HPM           CM

                         all          inner            outer 

G2/G6 bricks        12             6                  6              7 

Solar cells            926         475              451           235 

G2 bricks               3             3                  -                5  

G6 bricks               9             3                  6               2 

 

3.2 Model evaluation 

 For each of the classes, a separate prediction model is 

developed and tuning parameters are optimized. During 

training, each brick in the grouped dataset is selected 

once as test brick and the model is trained on the 

remaining bricks. Thus, we realized a complete blind test, 

since the data from the test brick are not included in the 

training. The prediction accuracy of the model is 

calculated by averaging test brick errors over all the 

bricks in the group. 

 

3.3 Experimental evaluations 

 In our work, we conduct 4 different evaluations on 

our data using the developed brick rating model. 

 

i. In our first evaluation the model quality for different 

material classes is investigated. For each material 

class in Section 3.1, we train a separate prediction 

model as described in 3.2. During feature extraction, 

we extract the area fraction of contaminated sides, 

bottom and top regions, weighted harmonic mean of 

lifetime, the area fraction of dislocations and average 

resistivity as explained in Section 2.2.  

ii. We investigate the impact of the weighted harmonic 

mean as quality parameter on the prediction accuracy. 

We replace the weighted harmonic mean with 

standard harmonic mean and repeat the evaluation for 

all of the material classes. Further, we compare the 

prediction results of standard harmonic mean with 

weighted harmonic mean of lifetime.  

iii. We analyze the applicability of our model for quality 

inspection by sorting bricks based on the predicted 

results. We further determine the brick quality of 

individual bricks. Four bricks with different material 

quality are selected and their quality is determined 

using the proposed brick rating model.  

iv. Detailed analysis on prediction accuracy for the 

samples over brick height is carried out. Two central 

bricks from HPM with their measured and predicted 

Voc values over the brick height are compared. 

 

3.4 Experimental results 

 From our evaluations in Section 3.3, we derive 

following results. 

 Figure 6 shows the prediction accuracy of the 

proposed model from evaluations (i) in Section 3.3. The 

proposed brick rating model predicts the solar cell Voc 

with reasonable accuracy for inner and outer HPM bricks 

as seen in Figure 6. For the CM bricks, the prediction 

accuracy is lower than for HPM bricks.  

 Figure 6 also shows a comparison of the results using 

a prediction model with weighted harmonic mean and 

harmonic according, respectively, according to evaluation 

(ii) in Section 3.3. For all the material classes, the model 

with weighted harmonic mean has lower mean absolute 

errors (MAE) in prediction. 

 
Figure 6: Prediction quality for HPM and CM bricks 

from inner, outer positions in ingot. 

 

Quality predictions for four bricks as described in 

evaluation (iii) in Section 3.3 are shown in Figure 7. 

Brick 1 and 2 have lower quality (~ 4 mV) compared to 

brick 3 and 4. The predicted Voc distribution of these 

bricks is comparable to measured Voc distribution with 
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low errors. This shows the ability of the proposed brick 

rating model to distinguish bad quality bricks.  

 
Figure 7: Measured and predicted Voc distribution of 

four bricks with different material quality.  

 

In our detailed analysis from evaluation (iv) in 

Section 3.3, predicted and measured Voc for two central 

bricks with MAE of 2.8 mV and 1.8 mV respectively are 

shown as a function of brick height in the Figure 8. The 

predicted Voc for the brick 2 follows the measured Voc 

even at the strong slopes in the bottom and top regions 

below 60 mm and above 175 mm brick height. For brick 

1, the model slightly overestimates the Voc towards the 

top of the brick leading to slight errors in prediction. 

 

 
Figure 8: Comparison of measured (closed symbols) and 

predicted (open symbols) Voc values as function of brick 

height for two central bricks from different ingots. 

 
4 DISCUSSION 

 

 From our evaluations and results (i), (ii) and (iii) in 

Section 3.3 and 3.4, we have shown that the proposed 

brick rating model can predict the quality of the bricks 

for different material classes. It is also possible to 

distinguish low and high quality bricks using the 

proposed brick rating model.  

 From our detailed hight-dependent evaluation (iv) in 

Section 3.3, we observe two scenarios leading to larger 

errors in prediction. First, for brick 1, a small bump in the 

predicted Voc curve is observed in the region of 80-100 

mm brick height. The predicted Voc is higher than the 

measured values as seen in the Figure 8. Even though the 

lifetime in this region is higher, the measured Voc  

remains low which may be caused by structure-dependent 

efficiency limitations due to the Al-BSF cell process 

applied here [22]. Thus, the wafers with higher lifetime 

values lead to errors in prediction.  

 Secondly, for the same brick 1, large errors are also 

observed in the region higher than 200 mm in the brick. 

The predicted Voc values in these regions are 

overestimated compared to the measured ones. This is 

because the dislocations determined at the brick surface 

do not represent the true dislocation distribution over the 

entire sample area. Error! Reference source not found. 

(a) shows a PL image of one of the wafer in this region. 

Most of the dislocation clusters appear in the inside part 

of the wafers which are not visible within the brick 

measurements. 

 

 The proposed brick rating model allows accurate 

prediction for homogeneous materials but has limited 

accuracy in materials with inhomogeneous defect 

distributions within outer and inner parts of the brick. 

The higher prediction error for cast-mono material result 

due to errors in estimation of dislocation structures from 

brick measurements to true density of dislocations. 

During cast-mono crystallization functional defects such 

as grain boundaries are introduced to control the 

ingrowth of parasitic grains and dislocation clusters. In 

these bricks, the dislocations arise close to the grain 

boundaries and grow further into the material as seen in 

Error! Reference source not found. (b). Therefore, it is 

challenging to estimate the actual defect distribution for 

such bricks only from MDP brick lifetime images. 

 Finally, Figure 10 motivates the reason for restricting 

wafer samples with at least 7 µs of carrier lifetime during 

training and evaluation of prediction model. The Figure 

10 (a) shows the average lifetime (red), weighted 

harmonic mean (blue) and measured Voc (green) over the 

brick height. Figure 10 (b) shows the four sides of MDP 

lifetime image.  

 
Figure 9: PL image of a wafer from a (a) HPM brick 

(Brick 1) at a height of 225 mm and (B) CM brick at a 

height of 124 mm. 
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Figure 10: Analysis of contaminated bottom and top 

regions in a cast-mono brick. 

 In the region below 60 mm brick height, it is not 

possible to extract any features due to low lifetime 

values. These low lifetime values occur due to the in-

diffusion of impurities into the brick from the crucible 

bottom. However, during the solar cell process, 

impurities in these regions are gettered effectively. 

Therefore, we see a rise in measured Voc for the solar 

cells even with low lifetime values in diffusion regions. 

Since we cannot observe distinguishing features in the 

diffusion regions which explain the strong variations in 

Voc, only wafer samples with their harmonic mean higher 

than 7 μs are considered in the above evaluation. 

The gettering effect of the specific solar cell process, 

which improves the lifetime, can be seen only after the 

process itself. Appropriate rating for these special wafers 

will be addressed in future developments. 

 

5 CONCLUSION 

 

 We introduce a method for quantifying material 

quality based on the brick measurements only. We show 

a comparative analysis of the brick rating method on 

bricks from both inner and outer positions in the ingot. 

The proposed rating model successfully predicts the 

quality of HPM and CM bricks with MAE of 3.06 mV 

and 4.85 mV, respectively.  

 Further, we quantify structural defects in MDP 

lifetime brick measurements for both HPM and CM 

materials. We suggest calculating a weighted harmonic 

mean of lifetime for outer bricks and compare its 

performance over standard harmonic mean. 

  

  From the prediction results, we observe that a simple 

non-linear regression model like RERF is sufficient for 

predicting Al-BSF processed solar cells from HPM 

material with reasonable errors. This is due to the fact 

that cell efficiency is limited in the high-lifetime regions 

by the cell process and not by material quality. This 

however changes in the case of a PERC process which is 

more sensitive to material quality due to its higher 

efficiency potential which will be further investigated. 

Moreover, applicability of the brick rating model to 

materials with less structural defects seems interesting. 
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