INTERDIGITATED BACK CONTACT SILICON SOLAR CELLS
FEATURING ION-IMPLANTED POLY-SI/SIOx PASSIVATING CONTACTS

Christian Reichel¹, Ralph Müller¹,², Frank Feldmann¹,², Armin Richter¹, Martin Hermle¹, Stefan W. Glunz¹,²
¹Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg, Germany
²Department of Sustainable Systems Engineering (INATECH), Albert Ludwigs University Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany

ABSTRACT: Intergdigitated back contact (IBC) silicon solar cells featuring passivating contacts based on tunneling oxides (SiOx) and n- and p-type polycrystalline silicon (poly-Si) thin films were fabricated with different rear side configurations to show the impact of the recombination in the transition region between p-type and n-type poly-Si on the performance of the solar cells. On the one hand a) p⁺ and n⁺ poly-Si regions were in direct contact to each other ("no gap") using a local overcompensation (counterdoping) as a self-aligning process and on the other hand b) undoped (intrinsic) poly-Si remained between the p⁺ and n⁺ poly-Si regions ("gap"). These configurations were investigated in terms of recombination characteristics by illumination- and injection-dependent quasi-steady state photoluminescence (suns-PL) and were compared to solar cells that featured c) etched trenches separating the p⁺ and n⁺ poly-Si regions ("trench"). While the latter configuration allowed for open-circuit voltages (Voc) of 720 mV, fill factor (FF) of 79.6%, and short-circuit current (Jsc) of 41.3 mA/cm², resulting in conversion efficiencies (η) of 23.7%, solar cells without a trench showed a poor performance due to non-ideal recombination in the space charge regions with high local ideality factors as well as recombination in shunted regions. Therefore, Voc of only 593 mV and FF of only 61.3% were achieved for the "no gap" configuration whereas for the "gap" configuration higher Voc of 680 mV but also low FF of 65.6% were obtained.

Keywords: amorphous silicon, annealing, back contact, deposition, heterojunction, lifetime, passivation, polycrystalline, recombination, solar cells

1 INTRODUCTION

Intergdigitated back contact (IBC) silicon solar cells featuring passivating contacts have pathed the way to efficiencies of more than 25% as presented by SunPower [1], Sharp [2] and Panasonic [3]. Kaneka pushed the limits even further and achieved a world record of 26.7% utilizing intrinsic and doped amorphous silicon (a-Si) thin films as passivating contacts with excellent passivation and excellent transport properties [4,5]. These excellent properties are currently challenged by another passivating contact based on semicrystalline or polycrystalline silicon (poly-Si) and silicon oxide (SiOx) thin films, named tunnel oxide passivated contacts (TOPCon) or polycrystalline silicon on oxide (POLO) contacts which gained a lot of interest in the past years and re-emerged as a competitive and alternative technology to a-Si thin films [6,7]. The application of poly-Si thin films resulted in efficiencies of up to 25.7%, realized on n-type c-Si with a p-type boron-diffused emitter on the front and a n-type poly-Si thin film as a passivating contact. In fact, this represents the highest efficiency reported for both-sides contacted c-Si solar cells, allowing open-circuit-voltages (Voc) of 725 mV and fill factors (FF) of 83.3%[6].

The integration of these poly-Si thin films into single-side contacted c-Si solar cells however poses a challenge due to high recombination in the transition from p- to n-type poly-Si [8–12]. This was first shown by SunPower in 2009 [8] and later encountered by several other groups [9–12]. In order to show the effects of the recombination on the performance of the solar cells in more detail, the transition region between p-type and n-type poly-Si was created in different configurations. On the one hand a) p⁺ and n⁺ poly-Si regions were in direct contact to each other ("no gap") using a local overcompensation (counterdoping) as a self-aligning process [9,10] and on the other hand b) undoped (intrinsic) poly-Si remained between the p⁺ and n⁺ poly-Si regions ("gap") [13]. These configurations were compared to solar cells that featured c) etched trenches separating the p⁺ and n⁺ poly-Si regions ("trench") [7,12,14], see Figure 1. With illumination- and injection-dependent quasi-steady state photoluminescence (suns-PL) measurements the charge carrier lifetime and open-circuit voltage characteristic of the solar cells were determined. In this respect, the open-circuit voltage characteristics of the solar cells were modeled to reveal the dominating recombination mechanism that is influencing the performance of the solar cells.

![Figure 1: Schematic illustration of the solar cells with different configurations: a) p⁺ and n⁺ poly-Si regions in direct contact to each other ("no gap"), b) undoped (intrinsic) poly-Si remains between p⁺ and n⁺ poly-Si regions ("gap") and c) trenches separate p⁺ and n⁺ poly-Si regions.](image)

2 EXPERIMENTAL

IBC solar cells with an area of 2 cm × 2 cm were fabricated on shiny-etched <100>-oriented phosphorus (P)-doped n-type float-zone silicon wafers with a specific resistivity of 1 Ωcm and a thickness of 200 μm. The front
side was textured with random pyramids. Then an ultra-
thin tunneling silicon oxide (SiO_x) about 1.5 nm, was a
thin-chemically grown [15]. Subsequently, about 35 nm
of intrinsic amorphous silicon (a-Si) was deposited on the
wafers by low-pressure chemical vapor deposition
(LPCVD) [16]. Boron monofluoride (BF) ions were then
introduced into the intrinsic a-Si by ion implantation at an
ion dose of 5x10^{15} cm^{-2} either on the entire rear side for
the “no gap” configuration or locally via a SiO_x mask for
the “gap” configuration. P ions were then implanted via
another SiO_x mask either into the intrinsic a-Si at an ion
dose of 1.5x10^{14} cm^{-2} for the “gap” configuration or into
the boron-doped a-Si at an ion dose of 2.3x10^{15} cm^{-2} for
the “no gap” configuration as a counterdoping process
[17], applying an ion energy of 2 keV [18]. The pitch
distance of the IBC solar cells was 500 µm, whereas for the
“no gap” (“gap”) configuration the emitter was 400 µm
(360 µm) and the BSF was 100 µm wide. In the “gap”
configuration, a 20 µm wide undoped (intrinsic) a-
Si remained between the doped a-Si. For the fabrication
of the solar cells with a trench, some of the solar cells
with the undoped (intrinsic) a-Si, the a-Si was dry-
chemically etched via a sacrificial SiO_x mask, creating a
20 µm wide trench. Afterwards, a high-temperature
anneal was conducted, transforming the a-
Si into poly-Si. BF- and P-implantations resulted in sheet resistances
of about 1000 Ω/sq as measured for the whole stack with
constant doping densities of about 3.0x10^{19} cm^{-3} in the
poly-Si and a shallow doping tail extending to about
50 nm into c-Si. Then a 10 nm aluminum oxide (Al_2O_3)
was deposited on both sides, succeeded by a 60 nm silicon
nitride (SiN_x) antireflection coating deposition
[19] on the front side and a 100 nm SiO_x deposition on the
rear side. Afterwards, a hydrogen passivation was applied in a remote-plasma hydrogen passivation (RPHP)
system [20]. Prior to the thermal evaporation and the lift-
off of several 10 µm wide and in total 100 nm thick
titanium (Ti) and palladium (Pd) lines, local openings
were etched in Al_2O_3 and SiO_x on the rear. Finally, 5 µm
thick aluminum (Al) was thermally evaporated and
locally to realize the finger grid and the busbars in an
interdigitated pattern. Photolithography was used for the
several patterning processes and the lift-off. Additionally,
asymmetric control samples with the same front side as
the solar cells, but different rear sides (poly-Si/p, poly-
Si/n and poly-Si(i) as well as Al_2O_3/SiO_x) were fabricated using the same processes as described above.

The voltage-voltage (IV) parameters of the solar cells
were measured under standard testing conditions (STC).
and, furthermore, in forward and in reverse direction
without illumination. In addition, the illumination- and
injection-dependent charge carrier lifetime characteristics
were determined for the solar cells using quasi-steady
state photoluminescence (uns-PL) measurements [21,22]
and for the asymmetric control samples transient
photocurrent decay measurements were performed
[23,24]. In this way, effective minority charge carrier
times (τ_{eff}) and implied open-circuit voltages (V_{oc})
equivalent to the quasi-Fermi level splitting in the silicon
volume at an injection level corresponding to open-circuit
(OC) conditions, and implied fill factors (FF) at an
injection level corresponding to maximum power point
(MPP) conditions were obtained. For the asymmetric
control samples, V_{oc} was used to determine the surface
saturation current density (J_{0b}) of the different rear sides.
Furthermore, illumination- and injection-dependent
quasi-steady state open-circuit voltage (sun-IV) curves
of the solar cells were measured to determine the series
resistance (R_s) of the solar cells, calculating R_s from the
difference in pFF and FF [25].

3 RESULTS

Table 1 presents the results of the different solar cell
configurations. The solar cells without a trench showed a
poor performance due to detrimental recombination in the
transition region between p-type and n-type poly-Si.
This is in good accordance with the observations for lateral
poly-Si pn- and pin-diodes where defects at grain
boundaries greatly enhanced the recombination [26-28].
The detrimental recombination was even more
pronounced for the “no gap” configuration, allowing V_{oc}
and FF of only 593 mV and 61.3%, respectively. For the
“gap” configuration, V_{oc} of up to 680 mV and FF of
65.6% were obtained. In this case, R_s was twice as high
as for the “no gap” configuration. For both configurations
additional junction and/or shunt leakage currents were
observed when measuring the non-illuminated IV curves
which limit the V_{oc} and FF of the solar cells. In contrast,
solar cells with trenches allowed for V_{oc} of 720 mV, FF of
79.6% and J_{sc} of 41.3 mA/cm^2, resulting in η of 23.7%.

Table 1: IV and suns-PL parameters of the IBC solar
cells with different configurations, showing the best
values measured under standard testing conditions
(A1M1.5G, 100 mW/cm^2, 25 °C) for a designated area
of 4.0 cm^2.

<table>
<thead>
<tr>
<th>V_{oc} (mV)</th>
<th>J_{sc} (mA/cm^2)</th>
<th>FF</th>
<th>iV_{oc} (%)</th>
<th>iFF (%)</th>
<th>R_s (Ωcm^2)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) “no gap” configuration</td>
<td>593</td>
<td>41.5</td>
<td>61.3</td>
<td>597</td>
<td>62.7</td>
<td>0.38</td>
</tr>
<tr>
<td>b) “gap” configuration</td>
<td>680</td>
<td>41.2</td>
<td>65.6</td>
<td>675</td>
<td>68.8</td>
<td>0.67</td>
</tr>
<tr>
<td>c) “trench” configuration</td>
<td>720*</td>
<td>41.3*</td>
<td>79.6*</td>
<td>724</td>
<td>81.2</td>
<td>0.34</td>
</tr>
</tbody>
</table>

* independently confirmed by Fraunhofer ISE CalLab

The V_{oc}-limit of the solar cells was calculated, based on
an ideal saturation current density (J_{0b}) as a sum of the
area-weighted surface and bulk saturation current density
(J_{0b}) and (J_{0b}), respectively, of the asymmetrical control
samples. J_{0b} was around 8 fA/cm^2 and J_{0b} was around
3 fA/cm^2 for the Al_2O_3/SiO_x on the textured front side
of the wafer. J_{0b} of the poly-Si(p) and poly-Si(n) was
11 fA/cm^2 and 5 fA/cm^2, respectively, whereas
Al_2O_3/SiO_x on the rear side of the wafer allowed for
2 fA/cm^2. The intrinsic the poly-Si(i) thin film has a
much higher recombination, resulting in J_{0b} of 78 fA/cm^2.
J_{0b} was calculated using the experimentally determined
charge carrier lifetime of 7.2 ms for symmetrical lifetime
samples [29] with an intrinsic carrier concentration n_i of
8.79x10^{13} cm^{-2} at 25°C.

Using these values for the “trench” configuration, the
V_{oc}-limit was 724 mV (J_{0b} of 21 fA/cm^2). For the
“no gap” and the “gap” configuration, the V_{oc}-limit was
723 mV (J_{0b} of 22 fA/cm^2) and 718 mV (J_{0b} of 28
fA/cm^2), respectively. In the latter case, the V_{oc}-limit is
much higher than the actual measured V_{oc} of the solar cells. Thus, the transition region which is not accounted for in this simple evaluation, has a strong impact on the recombination behavior of the cell.

In order to evaluate the impact of the recombination in the transition region on the performance of the solar cells, iV_{oc} and iFF on finished solar cells were additionally determined by suns-PL measurements. In this case, iV_{oc} is a measure of the splitting of the quasi-Fermi levels of the minority charge carriers which is affected by recombination in the silicon volume and at all surfaces or interfaces, and can be calculated by measuring the average excess carrier density (Δn_{av}) of the solar cells [23,24]. In order to account for diffusion limited lifetime carriers [30], the injection-dependent charge carrier lifetime characteristics of the solar cells were additionally determined under short-circuit (SC) conditions performing suns-PL measurements with the same generation [31]. Subtracting Δn_{av} under SC conditions from Δn_{av} under OC conditions leads to Δn_{av} at the junction of the solar cells so that iV_{oc} and iFF can be extracted from the corrected suns-PL measurements, see Figure 2. The illumination-dependent iV_{oc} curves of the solar cells were then modeled to analyze the origin of the recombination in the transition region. In this case, the injection-dependent charge carrier lifetime characteristics was calculated, using radiative, Auger [32], bulk and surface recombination [33] as well as recombination in space-charge regions and in shunted regions [34], and converted into illumination-dependent iV_{oc} curves. The resulting illumination-dependent iV_{oc} curves were then interpreted in terms of the dominating recombination mechanisms [35].

For the “no gap” configuration, the illumination-dependent iV_{oc} curves from the corrected suns-PL measurements are marked by low iV_{oc} values due to detrimental recombination. Since high-quality silicon wafers were used and since the front surfaces as well as the p⁺ and n⁺ poly-Si rear surfaces enable high minority charge carrier lifetimes of more than several milliseconds, most of the recombination originates from the recombination in the transition region from the p⁺ to the n⁺ poly-Si. In this respect, J_{oc} of 21 fA/cm² was used for the bulk and surface recombination, see Figure 2a (green curve), but additional recombination terms were required to obtain a good fit at moderate and low illumination intensities. At these illumination intensities, recombination in space-charge regions and in shunted regions can occur. Therefore, a saturation current density (J_{oc}) of 17000 nA/cm² was used with a local ideality factor of 3.0, for the space-charge regions and a R_{oc} of 0.5 kΩcm² was used for the shunted regions, see Figure 2a (orange and brown curve). The high local ideality factors indicate that non-ideal recombination in the space charge regions of these solar cells exists [10,12,13] which limit the iV_{oc} to 597 mV and the iFF to 62.7%. Local ideality factors of 3.0 were also reported for lifetime samples with a direct contact of p⁺ and n⁺ poly Si regions [10]. Hence, it can be concluded that for the “no gap” configuration non-ideal recombination in the space charge regions as well as recombination in shunted regions are the limiting factors allowing V_{oc} to only 593 mV and FF of only 61.3%. Hence J_{oc} of 28 fA/cm² was used for bulk and surface recombination, V_{oc} values were obtained. J_{oc} of 3600 nA/cm² was used with a local ideality factor of 2.9, whereas for recombination in the shunted region an R_{oc} of 0.57 kΩcm² was used to obtain a good fit at moderate and low illumination intensities, see Figure 2b (green curve). For the space-charge region recombination, J_{oc} of 3600 nA/cm² was used with a local ideality factor of 2.9, whereas for recombination in the shunted region an R_{oc} of 0.57 kΩcm² was used to obtain a good fit at moderate and low illumination intensities, see Figure 2b (orange and brown curve).

In this case, the local ideality factors are almost in the
same range as compared to the “no gap” configuration and also indicate that non-ideal recombination in the space charge regions of these solar cells exists which limit the I_{sc} to 680 mV and the iFF to 68.7%.

In contrast to solar cells without a trench, the illumination-dependent I_{sc} curves of the “trench” configuration shows a completely different behavior. At high illumination intensities Auger and rear surface recombination dominate, whereas at moderate and low illumination intensities recombination in the space charge region and in shunted regions dominate. For the rear surface recombination, J_{01} was 21 fA/cm2, see Figure 2c (green curve), whereas for the space-charge region recombination, J_{0c} was 40 nA/cm2 when a local ideality factor of 2.3 was used and for recombination in the shunted region, R_{sh} was 0.62 kΩcm2, see Figure 2c (orange and brown curve). The local ideality factors are much lower as compared to solar cells without a trench, indicating a more ideal recombination behavior for the “trench” configuration. Therefore, high I_{sc} of 724 mV and high iFF of 81.2% were achieved. However, even here additional junction and/or shunt leakage currents were observed but to a much lesser extent, limiting the iFF and thus the FF of these solar cells. In this respect, the influence of shunts due to locally etched poly-Si (defects in the sacrificial SiO$_2$ mask) and/or of junction leakage currents due to the inversion layer in the trench (presence of Al$_2$O$_3$ passivation) have to be examined in the future.

4 SUMMARY AND CONCLUSIONS

In summary, the recombination within the highly-defective poly-Si is detrimental for the performance of interdigitated back contact (IBC) silicon solar cells where the p$^+$ and n$^+$ poly-Si regions are in direct contact to each other and where undoped (intrinsic) poly-Si remains between the p$^+$ and n$^+$ poly-Si regions. Illumination- and injection-dependent quasi-steady state photoluminescence (suns-PL) measurements revealed that non-ideal recombination in the space charge regions, characterized by high local ideality factors, as well as recombination in shunted regions is dominating the recombination behavior. While for the “pn-junction” configuration, the highest junction leakage currents and lowest shunts resistances were determined, it was observed that intrinsic poly-Si between the p$^+$ and n$^+$ poly-Si regions increased the shunt resistance slightly but could not prevent the detrimental recombination in the space charge region. In contrast, the separation of the p$^+$ and n$^+$ poly-Si regions by a trench enabled highly efficient solar cells (V_{oc} of 720 mV, FF of 79.6%, J_{sc} of 41.3 mA/cm2, η of 23.7%), showing that a locally conducting and highly-passivating intermediate layer is mandatory between the p$^+$ and n$^+$ poly-Si regions of IBC solar cells with poly-Si passivating contacts.

5 ACKNOWLEDGEMENTS

The authors would like to thank A. Leimenstoll, F. Schätzle, S. Schulz, A. Schiller, A. Lössel, E. Schäffer, and F. Martin for preparation and measurements of the solar cells. The authors also acknowledge M. Bauer from the Department of Microsystems Engineering (IMTEK) at the Albert-Ludwigs-University of Freiburg for the deposition of the polysilicon in the Cleanroom Service Center (RSC). F. Haase and R. Peibst from the Institute for Solar Energy Research Hamelin (ISFH) and J. Krügener from the Institute of Electronic Materials and Devices (MBE) at the University of Hannover are recognized for fruitful discussions within the joint project which was funded by the German Ministry of Economic Affairs and Energy under grant No. 0325827B “26+”.

REFERENCES