ANALYSIS AND PERFORMANCE OF DISPENSED AND SCREEN PRINTED FRONT SIDE CONTACTS AT CELL AND MODULE LEVEL

C. Rodriguez\(^a\), M. Pospischil\(^b\)*, A. Padilla\(^a\), M. Kuchler\(^b\), M. Klawitter\(^b\), T. Geipel\(^b\), M. Padilla\(^b\), T. Fellmeth\(^b\), A. Brand\(^b\), R. Efinger\(^b\), M. Linse\(^c\), H. Gentische\(^d\), M. König\(^d\), M. Hörteis\(^d\), L. Wende\(^d\), O. Doll\(^d\), F. Clement\(^d\) and D. Biro\(^b\)

\(^a\)Former Fraunhofer ISE, currently at Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, 117574, Singapore

\(^b\)Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg, Germany

\(^c\)Heraeus Deutschland GmbH & Co. KG, Heraeusstr. 12-14, D-63450 Hanau, Germany

\(^d\)ASYS Automatisierungssysteme GmbH, Benzstr. 10, 89160 Dornstadt, Germany

*Corresponding author. Tel.: +49 (0)761 4588 5268
E-mail address: maximilian.pospischil@ise.fraunhofer.de

ABSTRACT: In this paper, the potential of applied contact geometries by dispensing, single and double screen printing, are analyzed with respective modeling and simulations at cell and module level. Industrial Cz-Si p-type 156x156 mm\(^2\) Al-BSF cells are processed to compare the measured values with the estimated ones. A parallel ten nozzle fine line unit is used to print the dispensed fingers while for the screen printing technology, the standard process is applied. An in-depth characterization of the metal contacts by means of laser confocal microscopy, spectrally resolved light beam induced current and micro-light beam induced current (SR-LBIC and \(\mu\)LBIC, respectively) is conducted and respective values are applied for predicting cell and module results based on these geometrical parameters. Finally, resulting calculations are compared with measured results. The highest efficiency values are obtained for the dispensing technology, up to 19.3% on cell level and 18.3% on module level after light induced degradation (LID). The intent of this paper is to obtain the mathematical expressions of cell and module parameters to determine the factors with the highest influence over them. By this, an improvement in the fabrication process can be achieved to enhance their electrical performance and reduce the fabrication costs.

Keywords: Silicon Solar Cell and Module, Metallization, Dispensing, Screen Printing, Mathematical Analysis.

1 INTRODUCTION

Thick film screen printing technology has the highest share of the market with respect to the industrial cell metallization as a result of its contacts reliability and long term stability. In order to improve the electrical performance of the cell and to reduce the material usage, the requirement to print smaller fingers becomes necessary. Nevertheless, the production of thinner fingers leads to an increase of paste spreading [1] and mesh marks [2].

Dispensing technology appears as a process in which thin fingers down to 27 \(\mu\)m [3] with a high homogeneity level and improved finger shape [4] can be produced avoiding the inconvenience of paste spreading and mesh marks. Due to its contactless printing process, pastes may be precisely adapted towards a more beneficial contact geometry [5]. By this, a considerable increase in cell efficiency of up to +0.4%abs. in comparison to single screen printed technology has been previously demonstrated [6]. In order to understand and improve these geometric advantages, a separate analysis of optical and electrical losses was conducted on solar cell and module level.
In this study, industrial Cz-Si p-type 156x156 mm² Al-BSF cells with industrial emitters \((R_{sh} \approx 90 \, \Omega/sq.)\) are employed in order to compare the influence of dispensed, single and double screen printed contact fingers on cell results. On each sample, 100 fingers and three single screen printed busbars, whose width is equal to 1.2 mm, are printed, respectively. One-cell modules are fabricated from the previous investigated solar cells that are equipped with standard solar glass, EVA, back sheets and three solder tabs at the top and at the rear side of the cell. The tab width is 1.5 mm and the thickness 0.2 mm. The value of the short circuit current density is estimated considering the influence of the effective finger width which is obtained from three methods based on the SR-LBIC, \(\muLBIC\) and on a software tool named “Reflectometer” which was developed for this work, respectively. The area weighted series resistance is then calculated applying the lumped resistance model [7], while the open circuit voltage, fill factor and efficiency are derived from the two diode model [8]. With the previous procedures, a wide analysis of the metallization influence over the cell and module behavior is presented and discussed.

3 RESULTS AND DISCUSSIONS

3.1 Finger analysis

In order to print the dispensed fingers, a parallel ten nozzle (nozzle diameter of 60 µm) fine line unit is applied on a cell with preprinted non-contacting busbars. The screen printed technology is employed to produce single SP(1x) and double printed SP(2x) fingers, where screens with an opening of 50 µm and 45 µm are applied, respectively. The finger geometry properties are obtained from the Olympus LEXT4000, a commercially available laser confocal microscope, by which a 3D image with a 50x magnification is generated as shown in Figure 1. Two graphs are obtained per sample. The first one assigns a confocal 3D image (Real Image) while the later one shows the extracted height profile (Height Image). It can be appreciated that the dispensed samples present a more homogenous structure as well as higher slopes with lower paste spread at the edges, in comparison with the screen printed ones.

![Figure 1](image-url)
Figure 2: Resulting contact finger geometries of the three investigated groups on industrial CzS6x156 mm² material regarding: (a) optical finger width \(W_o \), (b) optical aspect ratio \(AR_o \) and (c) average finger cross-section area \(A_e \).

The optical finger width does not represent the corresponding shading generated by the grid on the solar cell. In order to properly describe these losses, the term Effective Width \(EW \) is commonly used as it considers the influence of the finger shape [10]. It is the percentage of the area covered by the metallic contacts that is effectively shading the cell. To obtain the \(EW \), a method performed with the SR-LBIC is proposed in [11] and performed in [12], the same procedure is also applied with the \(\mu LBIC \). The working principle consists in defining a unit cell in the solar cell (which contains one finger) with width \(W_{unit_cell} \) and measure the local \(j_{sc} \) of the whole region of the unit cell and of a region that is non-metallized, with average values of \(j_{sc_unit_cell} \) and \(j_{sc_no_metal} \), respectively. The \(EW \) can then be calculated as shown in Eq.(1).

\[
EW = \left(1 - \frac{j_{sc_unit_cell}}{j_{sc_no_metal}}\right) \cdot \frac{W_{unit_cell}}{W_o} \cdot 100\% (1)
\]

It was the intention of this study to compare the results obtained from the LBIC and \(\mu LBIC \) analysis, as the setup of the \(\mu LBIC \) is much simpler and samples do not have to be specially prepared. However, the resolution of the \(\mu LBIC \) is significantly higher than the one of the employed LBIC (3.13 µm vs 50 µm). Nevertheless, this difference should be irrelevant for the proposed method, due to the high number of applied measuring points.

A program designed in MATLAB named “Reflectometer” is also employed to estimate the \(EW \) applying the ray tracing analysis. It considers the height information of the sample obtained from the LEXT, the light absorption coefficient in silver, percentage of direct and indirect reflection, refractive index of the solar glass and air as well as the application of Snell’s law and Fresnel equations, among others. Due to equipment limitation, the LBIC and \(\mu LBIC \) measurements were not able to be performed at the same wavelength value but at 780 nm and 826 nm, respectively, which are close values, so that a similar behavior is expected. The results are shown in Figure 3.

As expected, the \(EW \) at module level is lower than the one at cell level (due to the internal reflection within the module) which means that the finger influence of shading losses decreases if the cell is incorporated into a module. The \(EW \) obtained from the LBIC and \(\mu LBIC \) analysis are similar; the simulated results obtained from the Reflectometer are also comparable to the previous methods with respect to the dispensing case. Nevertheless, larger differences between the calculated and simulated results are presented for the case of the screen printed samples, this is because the exact local shape of these fingers has not yet been considered due to their higher amount of paste spread, which makes it more difficult to recognize the finger edge at the simulation level.

Figure 3: Effective finger width calculation at the cell and module level based on the LBIC (at 780 nm), \(\mu LBIC \) (at 826 nm) and Reflectometer (at 780 nm) methods.

3.2 Electrical analysis

Short circuit current density (\(j_{sc} \)) approximation

The \(j_{sc} \) can be estimated from the \(EW \) values in order to reflect the properties of the metal fingers, despite later processing fluctuations. The previous method based on the SR-LBIC is considered to estimate \(j_{sc} \). In order to take into account the solar spectrum influence, the \(EW \) value is obtained for six different wavelengths (405 nm, 532 nm, 658 nm, 780 nm, 940 nm and 1064 nm) and then is weighted with respect to the photon flux, as shown in Eq.(2). The average results are presented in Table 1.

\[
Weighted\ EW = \frac{\sum (EW(\lambda) \cdot EQE(\lambda) \cdot Pf(\lambda))}{\sum (EQE(\lambda) \cdot Pf(\lambda))} (2)
\]

Where \(EQE(\lambda) \) is the measured external quantum efficiency of the cell or module and \(Pf(\lambda) \) the photon flux for a wavelength \(\lambda \).

The principle to estimate \(j_{sc} \) consists in the indirect relation between this value and the amount of shading regions on the cell. The total percentage of shading \(A_{grid} \) on the cell (with area \(A_{cell} \)) due to the optical area covered by the fingers \(A_{f,bb_tabs} \) (busbars are considered at the cell level while tabs at the module level) is obtained from Eq.(3), their average values are given in Table 1.

\[
A_{grid} = \frac{\left(A_{o,f} \cdot Weighted\ EW\right) + A_{o,bb_tabs}}{A_{cell}} \cdot 100\% (3)
\]
Subsequently, they are compared with a reference cell with a known short circuit current density $j_{sc,ref}$ and shading percentage A_{grid} as shown in Eq.(4)

$$j_{sc} = \frac{1 - A_{grid}}{1 - A_{ref}} \cdot j_{sc,ref} \quad (4)$$

Table 1: Average values of the weighted effective widths, optical area covered by the fingers, busbars and tabs and shading percentage at the cell and module level.

<table>
<thead>
<tr>
<th></th>
<th>SP(1x) cell</th>
<th>SP(1x) mod</th>
<th>SP(2x) cell</th>
<th>SP(2x) mod</th>
<th>Disp. cell</th>
<th>Disp. mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted EW (%)</td>
<td>95</td>
<td>72</td>
<td>87</td>
<td>60</td>
<td>72</td>
<td>46</td>
</tr>
<tr>
<td>$A_{eff}(cm^2)$</td>
<td>8.2</td>
<td>7.9</td>
<td>7.5</td>
<td>7.2</td>
<td>6.2</td>
<td>6.0</td>
</tr>
<tr>
<td>$A_{bus, tabs}(cm^2)$</td>
<td>5.3</td>
<td>14</td>
<td>5.3</td>
<td>14</td>
<td>5.3</td>
<td>14</td>
</tr>
<tr>
<td>$A_{grid}(%)$</td>
<td>5.4</td>
<td>8.1</td>
<td>4.8</td>
<td>7.6</td>
<td>4.0</td>
<td>6.9</td>
</tr>
</tbody>
</table>

The estimated results of j_{sc} as well as the measured ones are presented in Figure 4. A small deviation between estimated and measured values supports the assumption previously considered of the relation between j_{sc} and the amount of shading losses. As expected, due to a lower optical and effective width, the j_{sc} for the dispensing technology is the highest followed by the SP(2x) and SP(1x). Despite the lower EW and increased absorption of light on the anti-reflection coating as a result of the internal reflection, the average j_{sc} produced at module level tends to be lower than the one at the cell level. The main reasons for that are due to the external reflection at the glass surface and absorption losses in the glass and EVA layers.

![Figure 4: Estimated and measured short circuit current density at the cell and module level for the different finger technologies.](image)

Area weighted series resistance (r_f) approximation

After considering optical losses in the previous part, this section closely investigates ohmic losses contributing to the series resistance of the cell or module [8]. To obtain the individual contributions of the series resistance, as shown in Figure 5, the lumped series resistance model [7] is applied. This model relates the different series resistance contributions to their respective unit cell area (this value can then be applied to the whole cell due to the unit cell periodicity). The total series resistance r_f corresponds to the sum of all weighted contributions.

![Figure 5: Series resistance components (adapted from [8]).](image)

The equations that represent each resistance contribution have been previously developed in [8]. In this paper, however, improved approximations for the weighted base and busbar resistance contributions are employed. These equations are located in the Appendix section.

The contributions of the series resistance are represented in pie charts, as shown in Figure 6.

![Figure 6: Area weighted series resistance contributions at cell and module level for the analyzed finger technologies.](image)
"$R_{s,tape}$" in [13]) values which are similar at cell level but have a higher deviation at module level. This could be due to the impact of the cell gaps and cross connectors that were not considered when performing the estimation. Relatively close values were obtained for all technologies. This demonstrates that the dispensing technology does not cause higher ohmic losses at cell and module level. The module resistance is almost twice as high as the one at cell level, mostly because of the soldered tabs contribution.

The following considerations are applied:

- j_{ph} (mA/cm2): Photo-generated current density, assumed to be equal to the estimated $j_{w,c}$.
- j_{01} (pA/cm2): Dark saturation current density of diode one. It is obtained by fitting the measured dark IV curve on the two diode model based on the orthogonal distance regression method [14].
- j_{02} (pA/cm2): Dark saturation current density of diode two. It is obtained by fitting the measured dark IV curve on the two diode model based on the orthogonal distance regression method [14].
- r_p (Ω·cm2): Area weighted shunt resistance, obtained from the relation of the voltage with respect to the current density of the approximated slope of the dark IV curve within a range of -50 mV to 50 mV.
- n_1: Ideality number of diode one. Assuming the ideal case ($n_1 = 1$).
- n_2: Ideality number of diode two. Assuming the ideal case ($n_2 = 2$).
- T (K): Cell or module temperature. Assuming that the cell or module is at an ambient temperature of 298 K.
- K_B (eV/K): Boltzmann constant.
- e (C): Electron charge.

Two diode model approximation

Finally, the two diode model, which is represented by Eq.(5), is proposed to approximate the value of the fill factor (FF), open circuit voltage (V_{oc}) and efficiency (η) considering the previously estimated values for r_p and $j_{w,c}$.

$$j_L = \frac{j_{ph} - j_{01}}{\left[\exp\left(\frac{e \cdot (V_L + j_L \cdot r_p)}{n_1 \cdot K_B \cdot T}\right) - 1\right] - j_{02}} \cdot \left[\exp\left(\frac{e \cdot (V_L + j_L \cdot r_p)}{n_2 \cdot K_B \cdot T}\right) - 1\right] - \frac{V_L + j_L \cdot r_p}{r_p}$$

The measured effective width results obtained from experimental data of cell and module parameters based on dispensed and screen printed fingers was conducted. The finger geometry analysis reveals that the dispensing technology generates fingers with smaller optical widths in comparison to single and double screen printed technology. The drop in efficiency from cell to module level is mostly due to the lower assumed series resistance of the latter. The efficiency results are shown in Figure 8.

![Figure 7: Estimated and measured values of the area weighted series resistance at the cell and module level for the different metallization technologies.](image)

![Figure 8: Estimated and measured efficiency at the cell and module level for the different metallization technologies.](image)

4 CONCLUSIONS AND OUTLOOK

In this study, a comparison between simulated and experimental data of cell and module parameters based on dispensed and screen printed fingers was conducted. The finger geometry analysis reveals that the dispensing technology generates fingers with smaller optical widths in comparison to single and double screen printed samples (41.2 μm vs. 53.8 μm and 49.4 μm). The previous analysis, together with a smaller weighted effective width (72.4% vs. 95.5% and 87.2% at the cell level and 45.9% vs. 72.0% and 60.4% at the module level, respectively). This result is because of the high advantage that the former has due to its higher η. At cell level, the estimated and measured results are similar, the measured values at module level are lower than the predicted ones due to the lower assumed series resistance of the latter. The measured r_p is higher than 10.0 kΩ·cm2. Due to this high value, it can then be disregarded for the following calculations [7]. The measured effective width results obtained from the $LBIC$ and the $\mu LBIC$ are quite similar, which means that the former is good enough in order to perform a reliable analysis; without the necessity to destroy the measurement sample during preparation, thus saving costs and time. The average estimated efficiencies show a deviation of less than 0.1% and 0.3% in comparison with the measured ones at the cell and module level, respectively; this proves the reliability of the conducted calculations. The advantages presented at the dispensing fingers are the reasons why both analysis reveal a higher performance at the cell and module level (both times approx. +0.3% abs. in average).
In the meantime, dispensing technology improvements on similar material but applying pastes designed for screen printing and using nozzle diameters of only 40 µm during continuous printing, led to both, further increasing cell efficiencies (up to 19.7%) at decreasing finger cross-section A_f (down to 500 µm2) [9]. Where the latter correlates with a substantially reduced wet paste laydown of only 70 mg per wafer for the dispensed contact fingers + 20mg for dual printed busbars. Based on this new status, four cell modules of these high efficient Al-BSF samples are currently characterized at Fraunhofer ISE CallLab and will be presented at the conference.

5 ACKNOWLEDGEMENTS

The authors would like to thank all co-workers at the Photovoltaic Technology Evaluation Center (PV-TEC) and the module department. This work was supported by the German Federal Ministry for Economic Affairs and Energy within the research project “GECKO” under contract number 0325404.

6 APPENDIX

6.1 Area weighted series resistance (r_s) calculation

The lumped series resistance model applied to obtain r_s works as follows:

1. Select the resistance contribution of interest, as shown in Figure 5.
2. Define its unit cell region, as shown in Figure 9.
3. Calculate the effective resistance R_{eff}, as defined in Eq.(6). $P_{e,loss}$ and I_{uc} represent the total power losses of the chosen resistance from step one and the total current generated in the unit cell, respectively.

$$R_{eff} = \frac{P_{e,loss}}{I_{uc}^2}$$ \hspace{1cm} (6)

4. The area weighted resistance r is calculated from Eq.(7). A_{uc} represents the unit cell area.

$$r = R_{eff} \cdot A_{uc}$$ \hspace{1cm} (7)

5. The previous steps are repeated to calculate all the resistance contributions. The addition of all is equal to r_s.

The unit cells required to apply the previous steps for all the resistance contributions are shown in Figure 9.

![Figure 9: Defined unit cells in a solar cell with three busbars (slightly modified from [8]).](image)

The final equations are presented in Table 2:
In this paper, as indicated in section “3.2 Electrical analysis”, improved approximations to obtain the resistance contributions of the base and busbar are applied and presented in Table 4:

The variables employed in the previous table are described in Table 3:

Table 3: List of constants and variables required to obtain the resistance contributions.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Length of unit cell I and III</td>
<td>m</td>
<td>n_{Ag,pads}</td>
<td>Number of silver pads at rear side per column</td>
<td></td>
</tr>
<tr>
<td>A_{cell}</td>
<td>Cell area</td>
<td>m²</td>
<td>n_f</td>
<td>Number of fingers</td>
<td></td>
</tr>
<tr>
<td>A_{cell,non_met}</td>
<td>Non metallized cell area</td>
<td>m²</td>
<td>R_{sh}</td>
<td>Emitter sheet resistance</td>
<td>Ω</td>
</tr>
<tr>
<td>s</td>
<td>Finger separation</td>
<td>m</td>
<td>R_{front}</td>
<td>Front tab width</td>
<td>m</td>
</tr>
<tr>
<td>b_{front}</td>
<td>Length of unit cell II considering the front</td>
<td>m</td>
<td>R_{rear}</td>
<td>Rear tab width</td>
<td>m</td>
</tr>
<tr>
<td>b_{rear}</td>
<td>Length of unit cell II considering the rear</td>
<td>m</td>
<td>ρ_b</td>
<td>Base line resistivity</td>
<td>Ω</td>
</tr>
<tr>
<td>h_{BB}</td>
<td>Busbar height</td>
<td>m</td>
<td>ρ_c</td>
<td>Front contact resistivity</td>
<td>Ω</td>
</tr>
<tr>
<td>h_{f}</td>
<td>Finger height</td>
<td>m</td>
<td>ρ_{front}</td>
<td>Front tab line resistivity</td>
<td>Ω</td>
</tr>
<tr>
<td>h_{m,rs}</td>
<td>Metal rear side height</td>
<td>m</td>
<td>ρ_f</td>
<td>Finger line resistivity</td>
<td>Ω</td>
</tr>
<tr>
<td>h_{front}</td>
<td>Busbar height</td>
<td>m</td>
<td>ρ_{front}</td>
<td>Front tab line resistivity</td>
<td>Ω</td>
</tr>
<tr>
<td>h_{rear}</td>
<td>Rear tab height</td>
<td>m</td>
<td>ρ_{m,rs}</td>
<td>Metal rear side line</td>
<td>Ω</td>
</tr>
<tr>
<td>l_{cell}</td>
<td>Cell length</td>
<td>m</td>
<td>ρ_{rear}</td>
<td>Rear tab line resistivity</td>
<td>Ω</td>
</tr>
<tr>
<td>l_{f}</td>
<td>Finger length in unit cell I</td>
<td>m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Improved approximation to obtain the resistance and area weighted resistance contributions of the base and busbar.

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Unit cell (A_{\text{cell}})</th>
<th>(R_{\text{eff}}): Resistance of the unit cell ((\Omega))</th>
<th>(r): Area weighted resistance ((\Omega\cdot\text{cm}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>(A_{\text{cell}})</td>
<td>(\rho_b \cdot T h_{\text{cell}} / A_{\text{cell,non,met}})</td>
<td>(\rho_b \cdot T h_{\text{cell}} / A_{\text{cell,non,met}})</td>
</tr>
<tr>
<td>Busbar</td>
<td>(2a \cdot b_{\text{front}})</td>
<td>(\rho_{\text{BB}} \cdot (2 \cdot b_{\text{front}}^2 + s^2) / 6 \cdot b_{\text{front}} \cdot h_{\text{BB}} \cdot w_{\text{BB}})</td>
<td>(a \cdot \rho_{\text{BB}} \cdot (2 \cdot b_{\text{front}}^2 + s^2) / 3 \cdot h_{\text{BB}} \cdot w_{\text{BB}})</td>
</tr>
</tbody>
</table>

The procedure from [8], to calculate the base contribution, assumes that the photons are absorbed through the whole cell area \(A_{\text{cell}}\), while the improved method considers that this occurs only at the effective non-metallized regions \(A_{\text{cell,non,met}}\) in which the \(EW\) is also taken into account.

The method to obtain the busbar contribution, as indicated in [8], assumes that the amount of current flowing through the busbar increases linearly along its length. The improved method considers that the current increases by a constant step value at the locations where the fingers intersect with the busbar. This last one is a better approximation as most of the current is first transported through the fingers in order to reach the busbar.

7 REFERENCES