
Presented at the 31st European PV Solar Energy Conference and Exhibition, 14-18 September 2015, Hamburg, Germany 

 

ANALYSIS AND PERFORMANCE OF DISPENSED AND SCREEN PRINTED FRONT SIDE CONTACTS AT 
CELL AND MODULE LEVEL 

 
 

C. Rodrígueza, M. Pospischilb*, A. Padillab, M. Kuchlerb, M. Klawitterb, T. Geipelb, M. Padillab, T. Fellmethb, A. Brandb, 
R. Efingerb, M. Linseb, H. Gentischerb, M. Königc, M. Hörteisc, L. Wended, O. Dolle, F. Clementb and D. Birob 

 
aFormer Fraunhofer ISE, currently at Solar Energy Research Institute of Singapore, National University of Singapore, 7 

Engineering Drive 1, 117574, Singapore 
bFraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg, Germany 

cHeraeus Deutschland GmbH & Co. KG, Heraeusstr. 12-14, D-63450 Hanau, Germany 
dASYS Automatisierungssysteme GmbH, Benzstr. 10, 89160 Dornstadt, Germany 

eMerck KGaA, Postcode Q004/001, Frankfurter Str. 250, D-64293 Darmstadt, Germany 
* Corresponding author. Tel.: +49 (0)761 4588 5268 

E-mail address: maximilian.pospischil@ise.fraunhofer.de 
 
 

ABSTRACT: In this paper, the potential of applied contact geometries by dispensing, single and double screen printing, 
are analyzed with respective modeling and simulations at cell and module level. Industrial Cz-Si p-type 156x156 mm² 
Al-BSF cells are processed to compare the measured values with the estimated ones. A parallel ten nozzle fine line unit is 
used to print the dispensed fingers while for the screen printing technology, the standard process is applied. An in-depth 
characterization of the metal contacts by means of laser confocal microscopy, spectrally resolved light beam induced 
current and micro-light beam induced current (SR-LBIC and µLBIC, respectively) is conducted and respective values are 
applied for predicting cell and module results based on these geometrical parameters. Finally, resulting calculations are 
compared with measured results. The highest efficiency values are obtained for the dispensing technology, up to 19.3% 
on cell level and 18.3% on module level after light induced degradation (LID). The intent of this paper is to obtain the 
mathematical expressions of cell and module parameters to determine the factors with the highest influence over them. 
By this, an improvement in the fabrication process can be achieved to enhance their electrical performance and reduce the 
fabrication costs. 
Keywords: Silicon Solar Cell and Module, Metallization, Dispensing, Screen Printing, Mathematical Analysis. 

 
 
1 INTRODUCTION 
 
 Thick film screen printing technology has the highest 
share of the market with respect to the industrial cell 
metallization as a result of its contacts reliability and long 
term stability. In order to improve the electrical 
performance of the cell and to reduce the material usage, 
the requirement to print smaller fingers becomes 
necessary. Nevertheless, the production of thinner fingers 
leads to an increase of paste spreading [1] and mesh 
marks [2]. 
 
 Dispensing technology appears as a process in which  

thin fingers down to 27 µm [3] with a high homogeneity 
level and improved finger shape [4] can be produced 
avoiding the inconvenience of paste spreading and mesh 
marks. Due to its contactless printing process, pastes may 
be precisely adapted towards a more beneficial contact 
geometry [5]. By this, a considerable increase in cell 
efficiency of up to +0.4%abs. in comparison to single 
screen printed technology has been previously 
demonstrated [6]. In order to understand and improve 
these geometric advantages, a separate analysis of optical 
and electrical losses was conducted on solar cell and 
module level. 

 
Nomenclature    
Acell (cm2) Cell area rc (Ω·cm2) Area weighted contact resistance  
Af (cm2) Finger cross-section area  of front grid to emitter 
 __௧௦ (cm2) Optical area covered by the busbars or tabs re (Ω·cm2) Area weighted emitter resistanceܣ
AL-BSF Aluminum back surface field Reff (Ω) Effective resistance 
Ao f (cm2) Optical area covered by the fingers rf (Ω·cm2) Area weighted finger resistance 
ARo Optical aspect ratio rfront tab (Ω·cm2) Area weighted front tab resistance 
Auc (cm2) Unit cell area rm rs (Ω·cm2) Area weighted rear side metal  
Cz Czochralski process  layer resistance 
Disp. Dispensed samples rp (Ω·cm2) Area weighted shunt resistance 
EQE(λ) External quantum efficiency rrc (Ω·cm2) Area weighted contact resistance  
EVA Ethylene-vinyl acetate  of rear side to base 
EW (%) Relative effective finger width rrear tab (Ω·cm2) Area weighted rear tab resistance 
FF (%) Fill factor rs (Ω·cm2) Area weighted series resistance 
Iuc (A) Total current generated in the unit cell Rsh (Ω/sq) Sheet resistivity  
jL (mA/cm²) Load current density rsj (Ω·cm2) Area weighted contact resistance  
jo1 (pA/cm2) Dark saturation current density diode 1  of soldering joint 
jo2 (pA/cm2) Dark saturation current density diode 2 SP(1x) Single screen printed samples 
jph (mA/cm²) Photo-generated current density SP(2x) Double screen printed samples 
jsc (mA/cm²) Short circuit current density of SR-LBIC Spectrally resolved light beam 
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 reference cell  induced current 
jsc no metal (mA/cm²) Average short circuit current density of T (K) Cell or module temperature 
 non metallized region VL (V) Load voltage 
jsc ref (mA/cm²) Reference short circuit current density Voc (mV) Open circuit voltage 
jsc unit cell (mA/cm²) Average short circuit current density of Wo (µm) Optical finger width 
 unit cell Wunit cell (µm) Unit cell width 
LID Light induced degradation process ΔAf (%) Deviation of the finger cross-  
n1 Ideality number of diode 1  section area 
n2 Ideality number of diode 2 ߣ (nm) Wavelength  
Pe_loss (W) Total power losses  (%) Solar cell or module efficiency 
Pf(λ) (m-2·s-1) Photon flux  Λgrid (%) Total shading percentage 
r (Ω·cm2) Area weighted resistance Λref (%) Total shading percentage of  
rb (Ω·cm2) Area weighted base resistance  reference cell 
rBB (Ω·cm2) Area weighted busbar resistance µLBIC Micro light beam induced current 
 
 
2 APPROACH 
 
 In this study, industrial Cz-Si p-type 156x156 mm² 
Al-BSF cells with industrial emitters (Rsh ~ 90 Ω/sq.) are 
employed in order to compare the influence of dispensed, 
single and double screen printed contact fingers on cell 
results. On each sample, 100 fingers and three single 
screen printed busbars, whose width is equal to 1.2 mm, 
are printed, respectively. One-cell modules are fabricated 
from the previous investigated solar cells that are 
equipped with standard solar glass, EVA, back sheets and 
three solder tabs at the top and at the rear side of the cell. 
The tab width is 1.5 mm and the thickness 0.2 mm. The 
value of the short circuit current density is estimated 
considering the influence of the effective finger width 
which is obtained from three methods based on the SR-
LBIC, µLBIC and on a software tool named 
“Reflectometer” which was developed for this work, 
respectively. The area weighted series resistance is then 
calculated applying the lumped resistance model [7], 
while the open circuit voltage, fill factor and efficiency 
are derived from the two diode model [8]. With the 
previous procedures, a wide analysis of the metallization 
influence over the cell and module behavior is presented 
and discussed. 
 
 
3 RESULTS AND DISCUSSIONS 
 
3.1 Finger analysis 
 In order to print the dispensed fingers, a parallel ten 
nozzle (nozzle diameter of 60 µm) fine line unit is 
applied on a cell with preprinted non-contacting busbars. 
The screen printed technology is employed to produce 
single SP(1x) and double printed SP(2x) fingers, where 
screens with an opening of 50 µm and 45 µm are applied, 
respectively. The finger geometry properties are obtained 
from the Olympus LEXT4000, a commercially available 
laser confocal microscope, by which a 3D image with a 
50x magnification is generated as shown in Figure 1. 
Two graphs are obtained per sample. The first one 
assigns a confocal 3D image (Real Image) while the later 
one shows the extracted height profile (Height Image). It 
can be appreciated that the dispensed samples present a 
more homogeneous structure as well as higher slopes 
with lower paste spread at the edges, in comparison with 
the screen printed ones. 

Figure 1: 3D Images of fingers obtained from LEXT 
microscope. 
Dispensed: a) Real Image b) Height Image. 
Single Screen Printed: c) Real Image d) Height Image. 
Double Screen Printed: c) Real Image d) Height Image. 

 
 In the following, a statistical processing of the finger 
data using an in house developed MATLAB tool took 
place, as introduced in [4], in which the information 
provided by the LEXT measurements (finger height, 
shape, among others) is employed to estimate the optical 
and electrical finger properties. Different finger 
parameters are obtained and presented in Figure 2. In 
average, the optical width (Wo) of the dispensed samples 
is 41 µm while the one of the single and double screen 
printed measure 54 µm and 49 µm, respectively. These 
values show the potential of the first technology because 
the printed fingers have a lower width in comparison with 
the diameter of the nozzles (here: 60 µm). Opposite is the 
case of the latter ones in which the finger width is larger 
than the screen opening being 50 µm and 45 µm, 
respectively. An increase of the optical aspect ratio and 
the homogeneity level enhances the electrical 
performance of processed solar cells and modules [4]. 
The relatively high cross-section area, which is on a 
similar level as the one of the double printed samples, 
correlates with the diameter of the applied dispensing 
nozzles in this experiment and was reduced to values 
below 500 µm² in latest experiments [9].  
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“Rs_light” in [13]) values which are similar at cell level but 
have a higher deviation at module level. This could be 
due to the impact of the cell gaps and cross connectors 
that were not considered when performing the estimation. 
Relatively close values were obtained for all 
technologies. This demonstrates that the dispensing 
technology does not cause higher ohmic losses at cell and 
module level. The module resistance is almost twice as 
high as the one at cell level, mostly because of the 
soldered tabs contribution. 

Figure 7: Estimated and measured values of the area 
weighted series resistance at the cell and module level for 
the different metallization technologies. 

Two diode model approximation 
 Finally, the two diode model, which is represented by 
Eq.(5), is proposed to approximate the value of the fill 
factor (FF), open circuit voltage (Voc) and efficiency (ƞ) 
considering the previously estimated values for rs and jsc.  
 
݆ ൌ 

݆ െ ݆ଵ ∙ ቆ݁ݔ ቈ
݁ ∙ ሺ ܸ  ݆ ∙ ௦ሻݎ

݊ଵ ∙ ܭ ∙ ܶ
 െ 1ቇ െ ݆ଶ

∙ ቆ݁ݔ ቈ
݁ ∙ ሺ ܸ  ݆ ∙ ௦ሻݎ

݊ଶ ∙ ܭ	 ∙ ܶ
െ1ቇ െ ܸ  ݆ ∙ ௦ݎ

ݎ
 

(5) 

 
 The following considerations are applied: 
 
 jph (mA/cm2): Photo-generated current density, 

assumed to be equal to the estimated jsc. 
 jo1 (pA/cm2): Dark saturation current density of 

diode one. It is obtained by fitting the measured dark 
IV curve on the two diode model based on the 
orthogonal distance regression method [14]. 

 jo2 (pA/cm2): Dark saturation current density of 
diode two. It is obtained by fitting the measured dark 
IV curve on the two diode model based on the 
orthogonal distance regression method [14]. 

 rp (Ω·cm2): Area weighted shunt resistance, obtained 
from the relation of the voltage with respect to the 
current density of the approximated slope of the dark 
IV curve within a range of -50 mV to 50 mV. 

 n1: Ideality number of diode one. Assuming the 
ideal case (n1 = 1). 

 n2: Ideality number of diode two. Assuming the 
ideal case (n2 = 2). 

 T (K): Cell or module temperature. Assuming that 
the cell or module is at an ambient temperature of 
298 K. 

 KB (eV/K): Boltzmann constant. 
 e (C): Electron charge. 

 VL (V): Load voltage. 
 jL (mA/cm2): Load current density. 
 The measured rp is higher than 10.0 kΩ·cm2. Due to 
this high value, it can then be disregarded for the 
following calculations [7]. 
 The efficiency results are shown in Figure 8. 

Figure 8: Estimated and measured efficiency at the cell 
and module level for the different metallization 
technologies. 

 The estimated efficiency of the dispensed contacts is 
higher than the one of the SP(1x) and SP(2x) (in average, 
19.2% vs. 18.9% and 19.1% at the cell level and 18.5% 
vs. 18.2% and 18.4% at the module level, respectively). 
This result is because of the high advantage that the 
former has due to its higher jsc. At cell level, the 
estimated and measured results are similar, the measured 
values at module level are lower than the predicted ones 
due to the lower assumed series resistance of the latter. 
The drop in efficiency from cell to module level is mostly 
due to the effects from LID [15], an increase of the series 
resistance, the reflection loss of light at the glass surface 
and the absorption losses within the glass and EVA layers 
[16]. 
 
 
4 CONCLUSIONS AND OUTLOOK 
 
 In this study, a comparison between simulated and 
experimental data of cell and module parameters based 
on dispensed and screen printed fingers was conducted. 
The finger geometry analysis reveals that the dispensing 
technology generates fingers with smaller optical widths 
in comparison to single and double screen printed 
samples (41.2 µm vs. 53.8 µm and 49.4 µm). The 
previous analysis, together with a smaller weighted 
effective width (72.4% vs. 95.5% and 87.2% at the cell 
level and 45.9% vs. 72.0% and 60.4% at the module 
level) due to an improved finger shape, leads to a 
significant increase of the short circuit current density 
[4]. The measured effective width results obtained from 
the LBIC and the µLBIC are quite similar, which means 
that the former is good enough in order to perform a 
reliable analysis; without the necessity to destroy the 
measurement sample during preparation, thus saving 
costs and time. The average estimated efficiencies show a 
deviation of less than 0.1% and 0.3% in comparison with 
the measured ones at the cell and module level, 
respectively; this proves the reliability of the conducted 
calculations. The advantages presented at the dispensing 
fingers are the reasons why both analysis reveal a higher 
performance at the cell and module level (both times 
approx. +0.3% abs. in average). 
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Table 2: Unit cell area, resistance from that unit cell and area weighted resistance contributions to the series resistance, as defined 
in [8]. 

Resistance Unit cell (cm2) Reff: Resistance of the unit cell (Ω) r:  Area weighted resistance (Ω·cm2) 
Rear side 
metal 
layer  

III:	a·2·ܾrear 
_௦ߩ ∙ ݈

6 ∙ ܾ ∙ ݄_௦
 

_௦ߩ ∙ ݈ ∙ ܽ
3 ∙ ݄_௦

 

Base  Acell 
ߩ ∙ ݄ܶ
ܣ

ߩ  ∙ ݄ܶ 

Emitter  I: a·
s

2
 

ܴ௦ ∙ ሺݏ െ ሻݓ
6 ∙ ݈

 
ܴ௦ ∙ ൫ݏ െ ൯ݓ ∙ ܽ ∙ ݏ

12 ∙ ݈
 

Contact of 
finger to 
emitter  

I: a·
s

2
 

ඥܴ௦ ∙ ߩ
݈

∙ ݄ݐܿ ቌ
ݓ
2
∙ ඨ
ܴ௦
ߩ
ቍ 

ܽ ∙ ݏ ∙ ඥܴ௦ ∙ ߩ
2 ∙ ݈

∙ ݄ݐܿ ቌ
ݓ
2
∙ ඨ
ܴ௦
ߩ
ቍ 

Finger I: a·
s

2
 

2 ∙ ߩ ∙ ݈
3 ∙ ݄ ∙ ݓ

 
ߩ ∙ ݈ ∙ ܽ ∙ ݏ
3 ∙ ݄ ∙ ݓ

 

Busbar II: 2·a·ܾfront 
ߩ ∙ ܾ௧

3 ∙ ݄ ∙ ݓ
 

2 ∙ ܽ ∙ ߩ ∙ ܾ௧
ଶ

3 ∙ ݄ ∙ ݓ
 

Front Tab IV:	2·a·lcell 
௧_௧ߩ ∙ ݈

6 ∙ ݄௧_௧ ∙ ௧ݓ
∙
2 ∙ ݊ଶ  1

݊ଶ
 

ܽ ∙ ௧_௧ߩ ∙ ݈
ଶ

3 ∙ ݄௧_௧ ∙ ௧_௧ݓ
∙
2 ∙ ݊ଶ  1

݊ଶ
 

Rear Tab IV:	2·a·lcell 
_௧ߩ ∙ ݈

6 ∙ ݄_௧ ∙ ௧ݓ
∙
2 ∙ ݊_ௗ௦ଶ  1

݊_ௗ௦ଶ
 

ܽ ∙ _௧ߩ ∙ ݈
ଶ

3 ∙ ݄_௧ ∙ _௧ݓ
∙
2 ∙ ݊_ௗ௦ଶ  1

݊_ௗ௦ଶ
 

 
 
 The variables employed in the previous table are 
described  
 

in Table 3:  
 

Table 3: List of constants and variables required to obtain the resistance contributions.

Symbol Description Unit Symbol Description Unit 
ܽ Length of unit cell I and m ݊_ௗ௦ Number of silver pads at - 
 III   rear side per column  

 -  Cell area m2 ݊ Number of fingersܣ

 �/__௧ Non metallized m2 ܴ௦ Emitter sheet resistance Ωܣ

 cell area  ݏ Finger separation m 

ܾ௧ Length of unit cell II m ݄ܶ Cell thickness m 

 considering the front  ݓ Busbar width m 

 external connectors  ݓ Finger width m 

ܾ Length of unit cell II m ݓ௧_௧ Front tab width m 

 considering the rear  ݓ_௧ Rear tab width m 

 external connectors /  ߩ Base line resistivity Ω·m 

 silver pads  ߩ Busbar line resistivity Ω·m 

݄ Busbar height m ߩ Front contact resistivity Ω·m2 

݄ Finger height m  (finger to emitter)  

݄_௦ Metar rear side m ߩ Finger line resistivity Ω·m 

 height  ߩ௧_௧ Front tab line  resistivity Ω·m 

݄௧_௧ Front tab height m ߩ_௦ Metal rear side line Ω·m 

݄_௧ Rear tab height m  resistivity  

݈ Cell length m ߩ_௧ Rear tab line   resistivity Ω·m 

݈ Finger length in m    

 unit cell I     

 
 In this paper, as indicated in section “3.2 Electrical analysis”, improved approximations to obtain the  
resistance contributions of the base and busbar are applied and presented in Table 4:  
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Table 4: Improved approximation to obtain the resistance and area weighted resistance contributions of the base and 
busbar. 

Resistance 
Unit cell 

(cm2) 
Reff: Resistance of the unit cell (Ω) r:  Area weighted resistance (Ω·cm2) 

Base  ܣ 
ߩ ∙ ݄ܶ
__௧ܣ

ߩ  ∙ ݄ܶ ∙
ܣ

__௧ܣ
 

Busbar  II: 2·a·ܾfront 
ߩ ∙ ሺ2 ∙ ܾ௧

ଶ  ଶሻݏ
6 ∙ ܾ௧ ∙ ݄ ∙ ݓ

 
ܽ ∙ ߩ ∙ ሺ2 ∙ ܾ௧

ଶ  ଶሻݏ
3 ∙ ݄ ∙ ݓ

 

 
 The procedure from [8], to calculate the base 
contribution, assumes that the photons are absorbed 
through the whole cell area Acell, while the improved 
method considers that this occurs only at the effective 
non-metallized regions Acell_non_met in which the EW is 
also taken into account. 
 The method to obtain the busbar contribution, as 
indicated in [8], assumes that the amount of current 
flowing through the busbar increases linearly along its 
length. The improved method considers that the current 
increases by a constant step value at the locations where 
the fingers intersect with the busbar. This last one is a 
better approximation as most of the current is first 
transported through the fingers in order to reach the 
busbar.  
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