FAILURE MECHANISMS FOR SOLAR CELLS WITH LASER DOPED SELECTIVE EMITTER AND PLATED NI-CU METAL CONTACTS

W. Hördt, S. Kluska, C. Geisler, S. Hopman, J. Bartsch, A. Mondon, M. Glatthaar
Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg, Germany,
Phone +49 761/4588-5019, wilhelm.hoerdt@ise.fraunhofer.de

ABSTRACT: Al-BSF solar cells with a laser doped selective emitter and plated Ni-Cu contacts are an attractive approach for industrial fabrication. Yet the contact adhesion of the plated Ni-Cu contacts due to diffusion barriers in the contact area and electrical stability against tempering induced non-ohmic Ni shunts are two main challenges for this cell concept. This work presents failure mechanisms of laser doped solar cells. Microscopic characterization analyzes process induced defects separately, which result in poor contact adhesion and non-ohmic shunting. A process route is presented, which yields in solar cells with pseudo fill factors above 80 % and a sufficient contact adhesion of 1 N/mm.

Keywords: Selective Emitter, Laser Doping, Laser Chemical Processing, Plated Contacts, Ni-Cu, Peel test

1 INTRODUCTION

Solar cell concepts with selective emitter design and plated contacts have been commercialized by BP Solar with the concept of a laser grooved buried contact solar cell [1] and by SUNTECH with the PLUTO technology [2]. Using the combination of laser doping and plated Ni-Cu contacts both cell concepts demonstrated high cell efficiencies of 18.3 % for BP Solar [3] and 20.3 % for SUNTECH [4]. RENA reached an solar cell efficiency of 18.6 % on an Al-BSF solar cell with Laser Chemical Processing [5]. For the fabrication of selective emitter design in combination with Ni-Cu plating one of the challenges limiting the success of these solar cell designs is the adhesion of the plated Ni-Cu contacts. An annealing step is favorable in order to form nickel silicides at the contact interface and improve the metal contact adhesion [6]. However, the annealing process can lead to the formation of nickel silicides (Ni,Si_x) deep enough to penetrate the space charge region of the pn junction, which results in significant power losses of the solar cell [7, 8].

The optimization of the back-end processing chain (laser doping → plating → silicidation → soldering) of a solar cell with Ni-Cu contacts is important for their electrical performance and a suitable adhesion of the plated contacts. This work will analyze failure mechanisms for laser doped solar cells with plated contacts and show methods to prevent those failure mechanisms.

2 EXPERIMENTAL SETUP

2.1 Cell Fabrication

In this work solar cells were fabricated using 156x156 mm² pseudo square p-type Cz Si wafers with a base resistivity of 1-3 Ωcm and random pyramids texture. The cell design was carried out into four 5x5 mm² cells per wafer with a 1.5 mm bus bar and 1.3 mm finger pitch on each cell. The full faced n-type emitter was produced by POCl₃ diffusion in a tube furnace resulting in 120 Ωcm resistivity. The front side passivation was done by PECVD SiN_x deposition and the back side contact by screen printed and fired Al. In addition a highly laser doped selective emitter (SE) was included into the process chain.

One approach for the SE laser doping was introduced in [9]. A green continuous wave (cw) laser (λ = 532 nm, P = 15 W) was guided onto the Si wafer surface by a galvanometric scanner head (SCANLAB-IntelliScan) with a scanning speed of v_{cw} = 5 m/s. A phosphorous wet film, which was spun directly onto the passivated Si surface after furnace diffusion provided the dopant source. This results in an average doping depth of 4.2 µm with sheet resistance of 9.6 Ω and a surface concentration of 5x10¹⁹ cm⁻³. Another technology to create a SE is Laser Chemical Processing (LCP) which was presented by [10]. Here a green nanosecond pulsed laser with pulse duration of 40 ns and a linear axis moving the sample with a velocity of 100 mm/s was used. This results in an average doping depth of 1.2 µm with a sheet resistivity of 6 Ω and a surface concentration of 1x10¹⁸ cm⁻³. The laser doped fingers were set to a width of 150 µm and consisted of overlapping lines.

![Figure 1: Process variation. Simultaneous laser doping and SiN, opening in Group 1 with cw laser and LCP in Group 2. On the right side the doping and SiN opening are split: cw laser doping → SiN → opening (Group 3 by Inkjet Mask & Etch, Group 4 by nanosecond laser ablation)](image-url)
Group 4 was structured with a green nanosecond pulsed laser with a pulse duration of 80 ns, which resulted in a contact opening of about 14 µm.

The front side metallization was deposited by Light Induced Ni Plating (LIP) with a RENA inline tool. All solar cells received a HF (1 %, 30s) pretreatment before plating. In order to analyze the influence of remaining surface diffusion barrier layers an extension of group 1 with a different pretreatment (10:1 BHF, 60 s) is presented here and is discussed in detail in [11]. The results will be denoted as “group 1-HF” and “group 1-BHF”. A harsh annealing step of 450 °C for 10 min at a forming gas atmosphere was performed in order to induce NiSi formation. The full metal contact stack of Ni, Cu and Ag was plated after unreacted Ni was selectively removed in Piranha etchant after anneal.

2.2 Characterization
The electrical annealing stability was analyzed by measuring the pseudo light IV curve with a Sinton SunsVOC tester. Here the pseudo fill factor (pFF) was measured before and after plating and annealing. Reverse Bias Electro Luminescence (ReBEL) studies were performed to localize Ni induced non-ohmic breakdown sites [7]. The adhesion of the plated contacts was tested with a ribbon soldered manually to the bus bar metal stack and ripped off under an angle of 90°. The measured peel force was recorded and normalized to a bus bar width of 1 mm.

Scanning electron microscope (SEM) studies of the contact profile and of the surface before and after peel tests were carried out to analyze the silicidation, defects and failing interfaces.

3 RESULTS AND DISCUSSION
The solar cells fabricated in this experiment were studied under two aspects, adhesion of the plated Ni-Cu contacts and electrical stability under the thermal stress applied for strong Ni silicidation. The following section will highlight the process effects on each aspect.

3.1 Contact adhesion effects
The results of the peel force measurement are summarized in Table 1 and the corresponding silicidation can be seen in profile in Figure 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Median [N/mm]</th>
<th>Max [N/mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-HF</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>1-BHF [11]</td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>1.2</td>
<td>1.7</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Mondon et al. showed that Nickel silicide (Ni,Si,) formation improves the adhesion for plated Ni contacts [6]. Yet a diffusion barrier for plated Ni in form of SiO2 and SiO2N0.5 was already observed in combination with laser doping, which hinders the NiSi formation and leads to a poor or no adhesion of the Ni-Cu contact [11, 12]. This can be seen in Table 1 especially in group 1 and 4. SEM measurements in Figure 2 a) and Figure 3 a) of solar cells of group 1 with simultaneous cw laser doping and SiNx removal show almost no silicidation. Only minor NiSi islands in the middle of the laser doped line are visible. (see Figure 3a). As expected a negligible peel force was measured. BHF treatment directly before Ni plating was performed to remove the oxides and more silicidation was observed in the laser doped area, (see Figure 3b). The peel forces improved to a mean peel force of 0.5 N/mm with BHF [11], similar to [12].

More silicidation can be found in group 4, where the solar cells were cw laser doped before SiN deposition and a nanosecond laser removal of the SiNx layer was performed. Yet the Ni,Si layer formation follows the pulses, (see Figure 4). Formation of SiO2N0.5 in a halo structure was observed in the outer pulse regions, which hinders the Ni diffusion and NiSi formation. Temperature distribution of a single laser pulse with a duration of 80 ns matches the temperatures of SiNx ablation in the center of the pulse and promoting SiO2N0.5 formation in outer rims of the pulse [11]. Despite the silicidation, the peel tests showed still a poor adhesion with a maximum peel force of 0.4 N/mm. Failing
interface was observed to be between plated Ni-Cu contact and Ni$_3$Si$_x$. Although Ni$_3$Si$_x$ has formed, the low peel force can be explained by the fact, that the contact area between Ni$_3$Si$_x$ and Ni-Cu is still not high enough to form sufficient adhesion. Another failing interface was observed between Ni$_3$Si$_x$ and Si itself. Chipping can be seen in Figure 4. Secondary laser induced defects in Si bulk through laser doping with a cw laser and dielectric structuring with a nanosecond laser weakens the material.

LCP doped cells from group 2 show a quite high peel force of max 1.7 N/mm and a median of 1.2 N/mm. A high coverage Ni$_3$Si$_x$ was observed. Yet chipping in the Si bulk is the dominant failure mechanism. Chipping along the LCP doped lines within a busbar after the peel test can be seen in Figure 5.

The surface of the LCP structured area results in a non-planar topography, which on the one hand gives the possibility to anchor the plated contact in “micro cavities”, (see Figure 2 b)). On the other hand a high density of micro cavities can lead to micro crack formation, which results in chipping in the peel test. These micro cavities may form from the melt and rapid recrystallization due to fluid cooling from the jet. A possible explanation is that the resulting forms can act as a lever in the peel test and enhance chipping.

A full faced Ni$_3$Si$_x$ formation (see Figure 2 c)) and no chipping demonstrated the process sequence of group 3 with cw laser doping and an Inkjet M&E SiN$_x$ opening. The peel forces were up to maximum of 1.5 N/mm and a median of 0.8 N/mm, which is comparable to the results from [11]. The failing interface is between the Ni and Ni$_3$Si$_x$.

3.2 Electrical effects

The electrical stability of the fabricated solar cells were characterized by measuring the pFF before plating and annealing. The results are summarized in Table 2.

Table 2: Pseudo fill factors of the presented groups before and after plating and annealing at a temperature of 450 °C for 10 min

<table>
<thead>
<tr>
<th>Group</th>
<th>pFF before plating and annealing [%]</th>
<th>pFF after plating and annealing [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-HF</td>
<td>84.5</td>
<td>81.4</td>
</tr>
<tr>
<td>1-BHF [11]</td>
<td>83.9</td>
<td>67.8</td>
</tr>
<tr>
<td>2</td>
<td>84.3</td>
<td>51.1</td>
</tr>
<tr>
<td>3</td>
<td>83.4</td>
<td>78.9</td>
</tr>
<tr>
<td>4</td>
<td>83.6</td>
<td>80.9</td>
</tr>
</tbody>
</table>

The nanosecond LCP doped solar cells showed Ni silicide formation, yet the silicidation has a negative effect on the electrical properties. It causes recombination active sites, which decreases the pFF of the solar cell, if silicides penetrate the space charge region [7]. Suns-V_{oc} measurement of the pseudo fill factor after plating and annealing showed significant decrease. Deep silicides of up to 1.7 µm can be found in micro cavities, which overshoot the middle pn junction depth of 1.2 µm and most likely spike through the space charge region. Figure 6 shows a ReBEL study of a LCP doped solar cell after plating and annealing. As demonstrated by [7, 8] the reverse bias breakdown sites visualized by ReBEL are for annealing-induced Ni shunts also the dominant recombination active sites under forward bias. The ReBEL images show recombination active breakdown sites within the laser doped area, especially in the busbar region. This proves that the degradation is not a result of parasitic Ni plating within the passivated area, but can be corresponded to an improper selective emitter shape with a too shallow and inhomogeneous doping depth [8].

Solar cells from group 1 with a simultaneous SiN$_x$ passivation opening and cw laser doping have only small pFF degradation after plating and annealing, but as described in the previous section, the silicidation is very limited in the contact area. A BHF treatment showed an increase of Ni$_3$Si$_x$, but also a pFF decrease below 70 %. Reverse Bias Electro Luminescence (ReBEL) studies
proved that annealing induced Ni shunts are mostly located at the edge of the pyramid stumps at the edges of the laser lines where a very shallow pn junction depth is expected [11].

Solar cells of group 3 and 4 with cw laser doping proved stable pFF against annealing induced Ni shunts, since no silicides were found below the pn junction depth of 4.2 µm. The shallow doped regions at the boundaries of the laser doped regions were covered by SiNx passivation layer, since the structuring of the passivation layer was done in one separate process step leaving a narrow contact opening. However both groups show minor pFF degradation. One reason for the degradation can be seen in the ReBEL measurement. Here the boundary areas of the bus bars show recombination active sites. Microscope studies of these areas showed laser induced micro cracks in which plated Ni can be found. During laser doping turnovers of the guided laser cause long dwell times on the substrate due to accelerations and causes tensions within the material. These tensions are most likely the origin of the crack formation, which induces cracks that are not passivated by the SiNx layer. A shadow mask during laser processing can avoid these defects.

Figure 7: Left side: Superposition of a top view gray image (light structures are the plated metal contacts) of an cw laser doped solar cell (group 4) after plating and annealing and a ReBEL measurement (yellow). Two pictures on the right side show optical microscope pictures with parasitic Ni plating in the laser induced micro cracks.

4 CONCLUSION

This work presents the challenges of solar cells with plated metal based contacts combined with laser doped selective emitter design. The adhesion of the plated Ni contact is strongly influenced by the surface conditions of the laser doped Si. SiO2 and SiO2N2 interface layers were found after laser structuring of the SiNx passivation with a cw laser. This interface layer hinders NiSi2 formation resulting in poor contact adhesion. BHF treatment of the same process sequence improved the contact adhesion by removing the oxides, but decreasing the solar cell performance by Ni induced shunting in shallow doped boundary regions. Solar cells with LCP laser doped selective emitter structures show good contact adhesion, but no stability to Ni induced non-ohmic shunts due to shallow doping depth of about 1 µm.

Solar cells with plated Ni contacts and laser doped selective emitter can be obtained, if the silicide formation is not disturbed. The cell design has to guarantee that the pn junction is deeper than the Ni silicides throughout the contact area. This can be realized when the SiNx removal is done separately from the doping step and the opening is narrower than the laser doped area.

REFERENCES