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ABSTRACT: The quality of multicrystalline Silicon (mc-Si) solar cells strongly depends on the quality of the wafer 

material. Although carrier lifetime and resistivity measurements provide basic material properties, photoluminescence 

(PL) images on as-cut wafers provide a much deeper insight as many crystallization defects become visible. In this 

work, a feature-based classification framework is introduced to rate the quality of mc-Si wafers in the as-cut stage ac-

cording to the expected IV parameters of the final solar cells. For the classification, three levels of complexity are 

compared. In addition to frequently used PL-image features, such as dislocations and contaminated regions, physical-

ly relevant image structures are described on a wavelet basis. Beyond the improved correlation of the PL-features 

with quality information, the more detailed description of image structures forms a basis to understand deviations of 

measured and expected material quality. The classification model is evaluated within a large experiment on more than 

1000 wafers, including a broad variety of wafers from different ingots and bricks from five different manufacturers, 

which have been processed in an industrial production line to standard solar cells with aluminium back-surface field. 

It is demonstrated that the presented approach allows the open circuit voltage to be predicted with a mean absolute er-

ror (MAE) of only 1.1 mV if the training of the model is performed on a random set of wafers. Moreover, the quality 

of wafers from an unknown ingot can be predicted with an MAE of 1.7 mV and from an unknown manufacturer still 

with an MAE of 3.6 mV, which proves the actual strength of the chosen approach. 

Keywords: Wafer Inspection, Quality Control, Pattern Recognition, Photoluminescence 

 

 

1 INTRODUCTION 

 

 The inline quality control of as-cut mc-Si wafers con-

cerning material quality is a challenging and important 

step to keep low-quality wafers out of production and 

thus optimize cell efficiencies and production yield. Es-

pecially during the development of new solar cell con-

cepts, an early forecast of the expected solar cell perfor-

mance is necessary for the sorting of different material 

qualities and the separation of material- and process-

related performance losses to identify necessary refine-

ments of process parameters for further optimization. To 

rate the electrical quality of the wafers, the approaches 

using lifetime measurement or pattern recognition within 

PL images are the methodologies discussed most. In spite 

of intensive investigations in the past years, no classifica-

tion method has proven so far to be able to rate mc-Si 

wafers from unknown manufacturers accurately. 

 The application of lifetime measurements via quasi-

steady-state photoconductance (QSSPC) measurements 

[1] was investigated in [2-4]. It has been shown that for a 

good correlation to solar cell efficiencies, effective life-

time values from inline measurements need to be correct-

ed with respect to trapping artefacts [5] and bulk lifetime 

[4], which is difficult on wafer level and difficult during 

an incoming control in a cell manufacturing line. PL-

imaging [6] is an important technique to characterize the 

quality of mc-Si wafers giving spatially-resolved infor-

mation on lifetime and doping. Crystal defects (e.g. grain 

boundaries and dislocations) and regions of reduced life-

time (e.g. contaminated region at the edges of a wafer), 

which arise during the crystallization process, are visible 

within PL-images. The correlation of these defect struc-

tures to the resulting solar cell performance was investi-

gated in [7-10]. In addition to the basic PL-image fea-

tures used in these previous works, a more advanced de-

scription of PL-images based on prototypical structures 

can be considered..   

 In addition to using the different measurement tech-

niques separately, their results can be combined in a fea-

ture based classification framework as introduced in [8]. 

Based on a set of empirical data, a machine learning algo-

rithm learns to predict the open circuit voltage given a 

distribution of different features on the as-cut wafers. To 

develop an appropriate classification scheme, a large var-

iation of wafer materials and corresponding cell data is 

required. In this work, we will compare the results of 

three rating algorithms which will be described below. 
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Figure 1: (Left) PL-image of an as-cut mc-Si Wafers. 

(Right) An algorithm automatically detects different fea-

tures. Highlighted here are the crystal defects and con-

taminated edge regions. 

 

 

2 FEATURE BASED CLASSIFICATION 

 

2.1 Incoming inspection 

 For rating and feature classification a variety of dif-

ferent methods was used for the incoming inspection of 

wafers. The PL-images were measured as described in [7] 

and evaluated according to [8]. Hereby, a set of physical-

ly meaningful features observed in PL images is detected 

and quantified. The described image processing algo-

rithms provide reliable results even when different fea-
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tures overlap and are therefore applicable on arbitrary 

unsorted wafers. Dislocations and grain boundaries, for 

example, are also detected in regions of reduced lifetime 

despite the inversion of the PL signal. An exemplary de-

tection result is shown in Fig.1.  

Beyond the PL-images, the following material parameter 

have been measured on the as-cut wafers within the in-

coming inspection in the Photovoltaic Technology Eval-

uation Center PVTEC [12] at Fraunhofer ISE.: thickness, 

resistivity, carrier lifetime, micro-cracks and inclusions. 

The carrier lifetime was measured by means of the quasi-

steady-state photoconductance (QSSPC) technique with a 

WTC-100 tool from Sinton Instruments according to [1] 

and corrected for trapping effects [5]. The doping con-

centration was calculated from the resistivity which has 

been measured inductively by means of a Kitec PV-R 

tool [11]. The doping concentration and trapping-

corrected carrier lifetime were added to the set of fea-

tures. Inclusions and micro-cracks were measured by 

means of an infrared-transmission system OSIS Wafer-

MicroCrack from Op-tection. The number of inclusions 

and micro-cracks complete the description of the wafers 

 

2.2 Basic features 

 Our basic feature set contains features extracted from 

PL-images, IR-transmission images, as well as doping 

concentration and QSSPC lifetime measurements as pre-

sented in [8]. With that every wafer is characterized by a 

histogram of different features. Please note that this basic 

approach contains multiple features of different methods 

and is thus far more advanced than the approach to corre-

late single features with solar cell efficiency as it is cur-

rently introduced as a first SEMI standard for a PL-based 

wafer rating.  

 

2.3 Modelling of PL-structures 

It is known from literature [13], that not only the 

amount of defects, but also the spatial distribution of are-

as of reduced lifetime in the as-cut wafers affects the 

quality of the resulting cell. Furthermore, the combina-

tion of different defect types has an impact on the ap-

pearance of the related defect structures. This affects the 

quantification of defects and the interpretation of a given 

structure.  

Within this work, combinations of local features are 

used to describe various structures according to their ap-

pearance in PL-images. An appropriate method to de-

scribe structures are Gabor wavelets [14]. These wavelets 

have a resolution in spatial and frequency domain, 

whereby size and frequency of the filters can be tuned to 

an optimal sharpness in spatial and frequency domain. 

Wavelet responses are extracted for different feature 

scales, frequency and orientations. Rotational invariance 

can be achieved by averaging the filter responses of a set 

of filters at different orientations [15]. Also, the 

smoothed image of dislocations or averaged PL-intensity 

values can be added to describe the structure within a fea-

ture vector. 

 In the second step, PL-structures are formed to proto-

types by means of vector quantization. Hereby unsuper-

vised clustering techniques like the k-means-clustering or 

self-organizing maps [16] are applied and create a so-

called codebook or vocabulary of textons. These textons 

represent typical PL-structures. The proposed method is 

known as bag of features model [17] and was adapted 

from document retrieval to object classification. A sche-

matic overview is depicted in Fig. 2. 

 To describe an image, the feature vectors are extract-

ed for each region in the PL-image. Within a nearest 

neighbour search, the feature vectors are mapped onto the 

best matching prototype. Finally each wafer can be de-

scribed by the distribution of typical PL-structures in its 

PL-image, a histogram over the defined vocabulary and 

prototypes, respectively. 

 

2.4 Extended feature set 

 A third extended feature set is formed, if the descrip-

tion from basic features and prototypes is combined. 

Therefore three different approaches (i) via basic features 

and (ii) via prototypes and (iii) their combination will be 

compared. The results from this rating are used to predict 

global solar cell parameters (here: VOC). The prediction 

of local solar cell parameters (e.g. J0) was presented 

elsewhere [18]. 

 

2.5 Classification via SVM 

For all feature sets, our approach is based on the 

evaluation of a large amount of empirical data. After the 

training set of wafers is described by the three feature 

sets measured at wafer level, a supervised machine learn-

ing algorithm learns to predict the quality of the wafer 

based on the cell results, achieved on the solar cells 

which have been manufactured from the training wafers. 

The model has to be evaluated on unknown data to test its 
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Figure 2: Schematic overview of the generation of the codebook of prototypes. Using wavelets, different features are ex-

tracted from a PL image. The combination of several local features forms a prototype and the wafer can be described by a set 

of prototypes found in the codebook.  
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quality. A frequently occurring challenge is an over-

fitting of the model to the given training data. Therefore 

support vector machines (SVM) are used. SVMs are su-

pervised learning models which classify input data with a 

focus on a high generalization performance of the model. 

Based on the kernel trick, the algorithm maps the input 

data into higher dimensional space. Within the classifica-

tion step, an optimal hyperplane is trained which maxim-

izes the margin between the classes. The classifier acts 

linear in the higher dimensional space, but may be non-

linear in the original space. A brief historical background 

of SVMs and a description of SVM regression is given in 

[19]. Within this work, Vapnik’s -SV regression model, 

as described in [19, 20], is trained with a radial basis ker-

nel to predict the open circuit voltage.  

 

 

3 MATERIAL SELECTION 

 

 Within our experiment a large variety of different 

material types has been investigated. 781 wafers from 12 

bricks of 8 ingots and 2 manufacturers and 254 wafers 

taken out of 40 different boxes of 6 additional manufac-

turers were selected. The wafers which were taken from 

ingots were chosen from different positions within the 

ingot and brick, with a distance in brick height of at least 

10 wafers. The wafer sets from bricks also contained wa-

fers from top and bottom regions of the bricks as far as 

these wafers came from brick regions which fulfilled the 

standard cut-off criterion of a brick-lifetime above 2 µs 

measured via µPCD from Semilab.  

 After finishing the measurements on wafer-level, the 

images and global data were analysed and three sets of 

features extracted. First, the set of basic features was 

computed according to section 2.2. In a second feature set 

of prototypes, the basic PL-features were replaced by PL-

structures. Therefore, a codebook of 25 prototypical PL-

structures was modelled according to section 2.3. In a 

third extended set of features, a combination of basic fea-

tures and typical PL-structures (section 2.4) was com-

bined.  

 The whole set of wafers was processed to solar-cells 

with aluminium back-surface field (Al-BSF) in an indus-

trial production line at Sunways. After solar cell produc-

tion, current-voltage (IV) measurements were performed. 

Based on open-circuit voltage and the described features, 

a classification scheme was trained to rate the quality of 

the wafers applying Chang’s libsvm implementation [21]. 

Before a classification scheme can be used, it needs to be 

trained. Within our experiment, training and test set are 

split according to different configurations.  

 In our first configuration, the instances are randomly 

split into training and test set and evaluated according to 

three different feature combinations. To avoid an over-

fitting of the data a 3-fold cross-validation is applied. All 

instances are divided into three groups. Each group is 

predicted based on the training with the remaining 

groups.  

 The second configuration investigates the prediction 

quality of wafers taken from an unknown ingot. A set of 

164 wafers from 3 different bricks are excluded from the 

training set. The model is trained with a 3-fold cross-

validation on the remaining wafers. I.e., none of the wa-

fers of the unknown ingot is trained.  

 In a third configuration the degree of similarity be-

tween wafers in test and training set is further reduced. 

This time all 344 wafers of a specific manufacturer are 

removed from the training set. Our prediction model is 

evaluated on wafers of this “unknown” manufacturer. 

 

 

4 RESULTS 

 

 The prediction quality of the model is evaluated 

based on the correlation coefficient r2, the mean absolute 

error (MAE) and the root mean squared error (RMS). Ex-

emplary prediction results for varying combinations of 

datasets and feature sets are listed in table 1. Chosen re-

sults are depicted in Fig.3 

 

Table I: Quality of prediction models based on varying 

data and feature sets.  

Prediction . Feature Corr. MAE. RMS 

(#test/training)   coeff. [mV] [mV] 

Rand.mixture Basic feat. 0.89 1.6 2.5 

(3-fold )  Prototypes 0.92 1.4 2.2 

   Ext. feat. 0.94 1.1 1.8 

Ingot   Basic feat. 0.89 2.0 2.7 

(164/779)  Prototypes 0.88 2.3 3.0 

   Ext. feat. 0.89 1.7 2.4 

Manufacturer Basic feat 0.74 3.1 4.1 

(344/599)  Prototypes 0.78 3.7 4.3 

   Ext. feat. 0.75 3.6 4.5 

 

 The prediction results for random selection shows 

good correlations for both the basic and the extended ap-

proach. Especially the  extended approach leads to very 

good results, keeping in mind that process fluctuations 

and accuracy of the IV measurement can add up to an 

error of approximately 2 mV.  

 If wafers from an unknown ingot are predicted, again 

the extended features show best results. Strongly misclas-

sified wafers (e.g. the most left data points in Fig 3 mid-

dle row) can be identified by their wafer ID, which al-

lows to select and analyse unprocessed sister wafers in 

order to find the cause for the misclassification and to 

further improve the rating model. This will be done in the 

next step.  

 The prediction of an unknown manufacturer increases 

the mean absolute prediction error above 3 mV.  Results 

of further “unknown” manufacturers show prediction re-

sults of similar or slightly reduced quality with overall 

mean prediction errors of 3.2 mV for basic features, and 

3.9 mV for the prototype or extended feature set. 

 

5 DISCUSSION 

 

 The quality of a learning-based classification scheme 

depends on the extent and the distribution of the given 

data. The evaluation based on a random selection of wa-

fers shows very good prediction results. Comparable 

open-circuit voltages are assigned to wafers with similar 

signatures. The description of the wafers is refined using 

PL-structures instead of basic features. Also adding PL-

structures to the feature vector leads to an improved pre-

diction quality. The high precision of the prediction can 

be referred to the smooth transitions in wafer signature 

and quality within a brick. 

 The prediction of wafers of an unknown ingot leads 

to prediction results with MAE of 2 mV. Considering that 

natural process deviations and measurement errors are in 

the same range, this is an excellent result which confirms 

our approach. A quality prediction of material of an un-

known manufacturer compared to a known manufacturer  
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Figure 3: Prediction results for varying training and test configurations (rows) based on different feature combinations (col-

umns). The plots show measured and predicted open-circuit voltages with a random split of training and test data (top row), a 

test of 164 wafers from 3 bricks of an unknown ingot (middle row) and the prediction of an unknown manufacturer. In all 

approaches the models were trained with a SVM using a 3-fold cross-validation to avoid an over-fitting of the data to the test 

set. Especially the prediction results of wafers from an unknown ingot confirm our approach. 
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shows a reduced performance. This may originate from 

different characteristics of the unknown material. Despite 

the high generalization performance of the SVM, an ex-

trapolation of the prediction model to data with strongly 

varying characteristic can lead to misclassifications. 

Moreover, an unbalanced distribution of the data can lead 

to an unwanted bias within the prediction model.  

 Fig. 4 depicts the open-circuit voltage (Voc) distribu-

tion of the training set (red bars) and of the test set of the 

predicted unknown manufacturer (green bars). Wafers 

from the unknown manufacturer show higher Voc values 

compared to the training set. Concurrent, the visualiza-

tion in Fig. 3 (third row, right column) for the wafers 

from an unknown manufacturer predicted with an ex-

tended feature set appears to underestimate the wafer 

quality. Due to additional structural information, the ex-

tended feature set leads to a more detailed description of 

the wafers and may be more sensitive to strongly imbal-

anced distributed test and training data. We expect that 

more empirical observations with a broad set of material 

will lead to a higher classification performance. 

Open circuit voltage (mV)

F
re

q
u

e
n

c
y

(c
o
u

n
ts

)

Figure 4: Distribution of the measured open-circuit volt-

ages of training and test set. Bins are given in steps of 

2mV.  

 

7 CONCLUSION & OUTLOOK 

 

 To improve the rating and prediction results of the 

quality of mc-Si wafers in terms of the final solar cell 

parameters, three feature-based approaches were devel-

oped and compared. The first basic feature set consists of 

scalar values extracted from various inline measurements 

during inline inspection, including e.g. features from PL 

and IR images. The second feature set consists of proto-

types of special PL structures which are generated via 

wavelet features and quantized in a codebook. The third 

feature set is the combination of the basic set and the pro-

totype set. Using a support vector machine, the rating was 

trained in different combinations of wafer sets and rating 

approach. On a material basis of approx. 1000 precisely 

characterized wafers, all approaches yielded errors being 

only slightly higher than measurement errors and process 

deviations. Completely unknown material could be pre-

dicted with only slightly reduced accuracy. As a result, 

the feature based rating is a very promising approach to 

further improve rating algorithms based on the correla-

tion of single features.  

 In the next steps, prediction errors of unknown manu-

factures are going to be examined in more detail. The 

modelled PL-structures can be used to evaluate differ-

ences in the distribution of crystal defects in bricks and 

ingotss of different manufacturers. A first approach to 

model relevant structures in photoluminescence images 

was introduced in [18]. Considering the local dark satura-

tion current as a spatially resolved quality measure, the 

understanding and selection of PL-structures can be im-

proved. 
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