Optical and thermal characteristics of solar shading and how they can be measured/determined **Results from the ICON project between LBNL and Fraunhofer ISE**

ICON

Helen Rose Wilson, Fraunhofer ISE Jacob Jonsson, LBNL

ES-SO Webinar Fraunhofer ISE, Freiburg 23rd February, 2022 www.ise.Fraunhofer.de

Solar shading and glazing components in the (European) "big picture"

- The European Performance of Buildings Directive sets ambitious guidelines to ensure that the building sector contributes to the energy transformation
- It is currently being implemented at the European national level in national laws and building codes
- The role of solar shading, together with glazing, has been recognised
- We need solar shading to balance different types of functionality, e.g.
 - Daylighting provision vs solar heat gain control.
 - Daylighting provision vs glare protection.

Venetian blind system mounted in the Köln Triangle building in Cologne

Quantifying the effect of solar shading on energy consumption, daylighting and glare in buildings – and the need for measured optical data

- Optical and thermal properties of solar envelope components are needed as a reliable basis for further calculations relevant to building performance
- This performance has often been based on optical properties measured at normal incidence
- Even accurate measurement of light-scattering or light-redirecting materials at normal incidence (τ_n-h, τ_n-n, ρ_n-h) is challenging.
- Angle-selective shading and fenestration systems require optical properties measured at least at oblique incidence

ICON

Venetian blind system mounted in the Köln Triangle building in Cologne

- τ_n -h, τ_n -n, ρ_n -h are not enough !

Integrating-sphere measurements of normal-hemispherical transmittance and reflectance of light-scattering glass panes according to modified NFRC standards

- An NFRC inter-laboratory comparison with 12 labs and 6 light-scattering glass samples applied integrating spheres with large entrance apertures
- Previous situation: Measured transmittance up to 0.10 too low!

"TAUWIN" integrating sphere at Fraunhofer ISE

Measured lightscattering laminated glass sample Commercial spectrophotometer with new integrating sphere at LBNL

Integrating-sphere measurements of normal-hemispherical transmittance and reflectance of light-scattering glass panes according to modified NFRC standards

BERKELEY LAF

Integrating-sphere measurements of normal-normal and normal-diffuse components of light-scattering glass panes according to modified NFRC standards, modelled on EN 14500

SERKELEY LA

FHG-SK+ ISF-CONFIDENTIAI

ENERGY TECHNOLOGIES AREA

Normal-conical transmittance τ_n -con

- a new metric to analyse the interaction between samples and measuring instruments

Normal-conical transmittance au_n -con

- a new metric to analyse the interaction between samples and measuring

Normal-conical transmittance τ_n -con for a light-scattering glass sample and a shade fabric as examples

Light-scattering glass laminate - strong variation of τ_n -con with half-angle (HA) -> result very sensitive to instrument geometry

Shade fabric

- little variation of τ_n -con with half-angle (HA) -> result insensitive to instrument geometry

ISE

rerer

BERKELEY LAF

transmittance τ

A hierarchy of spatial resolution for optical properties

- transmittance τ and reflectance ρ

|--|

Direct (varying both θ and ϕ)	hemispherical	Direct-hemisp	herical	τ_dir-h, ρ_dir-h		τ_dir-h			
Direct (varying both θ and ϕ)	Direct or diffuse	Direct-direct of direct-diffuse	or	τ_dir-dir, τ_dir-dif ρ_dir-dir, ρ_dir-dif		τ_dir-dir			
Direct (varying both θ and ϕ)	Direct (varying both θ and ϕ)	Bidirectional		BSDF, BTDF, BRDF*		$\tau_dir-dif$			
*Bidirectional scattering distribution function BSDF									
Bidirectional trar	nsmittance distribu	ition function			BTDF				
Bidirectional refle	ectance distributio	on function	BRDF						
12 © Fraunhofer ISE FHG-SK: ISE-CONFIDENTIAL	ICOI	N BE		RGY TECHNOLOGIES AREA					

Characterization of solar shading

Measurement of directional-hemispherical transmittance τ_dir-h

- Rotatable integrating sphere
- Spectral transmittance measurements at different angles of incidence
- Spectral weighting with v(λ) curve to obtain direct-hemispherical visible transmittance

τ_v_dir-h

Measured shading fabric sample

"TAUWIN" rotatable integrating sphere at Fraunhofer ISE

13 © Fraunhofer ISE FHG-SK: ISE-CONFIDENTIAL

Characterization of solar shading

Measurement of bi-directional transmittance distribution function BTDF

Photogoniometer

- Visible (light) BTDF measurements (corrected for dark signal) at different angles of incidence
- Spatial integration over hemisphere to obtain direct-hemispherical visible transmittance

τ_v_dir-h

Measured shading fabric sample in photogoniometer sample holder

pgII photogoniometer indicating paths traced by detector head

Characterization of solar shading

Measurement of bi-directional transmittance distribution function BTDF

- Photogoniometer
- Visible (light) BTDF measurements (corrected for dark signal) at different angles of incidence
- Spatial integration over hemisphere to obtain direct-hemispherical visible transmittance

τ_v_dir-h

Measured shading fabric sample in photogoniometer sample holder

pgll photogoniometer with measured shading fabric

Validation of direct-hemispherical transmittance results by comparing integrating-sphere and photogoniometric results for τ_v_dir-h

Incidence angles		τ_v_dir-h (Intea-	τ_v_dir-h (Photo-	Differ- ence in			
θ_{in}	ϕ_{in}	rating sphere)	gonio- meter)	τ_v_dir- h			
0	0	0.0194	0.0196	0.0002			
20	0	0.0192	0.0188	0.0004			
40	0	0.0185	0.0177	0.0008			
60	0	0.0155	0.0149	0.0006			
80	0	0.0086	0.0059	0.0026			

Agreement generally within 0.01 also for other incidence angles.

Convergence on photogoniometric measurement procedures within IEA-SHC Task 61

- Fraunhofer ISE and LBNL collaborated with other members of task 61 to decrease the variance in our measurement results using photogoniometers
 - Dark signal correction for samples with dominating specular components
 - Beam size, shape and focus
 - Standardized conversion to Klems basis using Radiance

Validation of direct-hemispherical and direct-direct transmittance by comparing photogoniometric results LBNL Fraunhofer ISE

- Good agreement between direct-direct ar direct-hemispherical values
- Slightly different distribution around the specular direction

meter sample holder

ICON

 $\tau_{dir-h} = 2.5\%, \tau_{dir-dir} = 1.13\%$ $\tau_{dir-h} = 2.7\%, \tau_{dir-dir} = 1.17\%$

Figures by D. Moroder-Geisler, Bartenbach

NFRC 301 covers thermal emissivity of rough glazing surfaces – also applicable to solar-shading materials with low transmittance

- FTIR instruments with an integrating sphere are not common among glazing manufacturers since coated glass is smooth and can be measured with a near-normal reflectance accessory
- A broadband emissometer was compared to FTIR instruments equipped with integrating spheres to find a low-cost and easy-to-use alternative to an IR integrating sphere
- Good agreement was achieved between 3 integrating spheres and 5 emissometers

Modelling glazing AND SHADING MATERIALS in WINDOW 7.8

- Text files with data for normal-normal and normal-diffuse reflectance and transmittance can be imported
- Allows for U and SHGC (g-value) calculation of window configurations where one or more of the panes is a diffuse glazing
- Public version soon to be released which will allow for NFRC to update its simulation manual and allow for more accurate NFRC rating of windows with diffuse glazing

Achievements in measurement methodology

- Accurate optical measurement of "challenging" samples with suitable integrating spheres demonstrated for lightscattering glazing in inter-laboratory comparison
- Agreement demonstrated between integrating-sphere and goniophotometric results for direct-hemispherical properties
- Metric developed to aid analysis of "critical" combinations of samples and measurement instruments
- Emissivity measurements of rough, IR-opaque samples validated for different instruments
- WINDOW simulation program further developed to accept normal-normal and normal-diffuse spectra
- For connection between goniophotometric data and energy performance in buildings – see next presentation!

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Lawrence Berkeley National Laboratory

Dr. Helen Rose Wilson

www.ise.fraunhofer.de

helen.rose.wilson@ise.fraunhofer.de

Dr. Jacob Jonsson www.lbl.gov

jcjonsson@lbl.gov

