SPATIALLY RESOLVED CHARACTERIZATION OF PEM FUEL CELLS AND STACKS

A detailed understanding of the coupled electro-chemical and thermo-dynamic processes in a fuel cell is a prerequisite for a cost effective and reliable design. We offer a scientifically based characterization of cell components, single cells, fuel cell stacks and peripheral systems. The results are optimized designs, operation strategies and validated models on both the cell and stack level.

Our Offer
- spatially resolved characterization of customer specific cells
- system-oriented stack characterization (up to 20 kW / 1000 A / 150 cells also in the climate chamber)

Characterization of Fuel Cell Stacks
Especially in the transport industry, fuel cell stacks have large active areas and many cells, therefore making inhomogeneities unavoidable. Aside from investigating the inhomogeneities, we also characterize the performance, efficiency and lifetime.

We measure our customers’ fuel cell stacks in our climate chamber under extreme operating conditions with our short stack test stands. By including units for anode recirculation and purge valves, we can carry out tests on the system level.

In addition, we can characterize up to 28 individual cells simultaneously in a stack by electrochemical impedance spectroscopy (EIS) at a wide range of operation conditions, we are able to obtain single cell voltages as well as electrochemical impedance spectra (EIS). The EIS allows us...
to differentiate the frequency dependent processes within the cells and gain an understanding about the stack functionality.

We support our customers in developing their stack design, from the component selection up to the control strategy for their fuel cell system. Particularly, we highlight the stack and system operation in extreme cold, hot and humid or dry environments.

Model-based Analysis of Experimental Results

To extract and analyze properties like gas velocity in channels or cells that are difficult to measure directly, we have developed scientific and thoroughly validated models.

Spatially Resolved Characterization of Single Cells

At high current densities and large cell areas the reaction gases can significantly deplete. Also a local increase of humidity and temperature can occur. The large inhomogeneities within the cell can influence the performance and degradation of the fuel cell. In order to characterize the local operation of the cells, we have systems for electro-chemical multi-channel analysis with several independent potentiostats coupled with frequency response analyzers. Hence, customized single cells may be divided into various segments with their individual electrical contact. In each segment, the operation can be characterized by simultaneous electrochemical impedance spectroscopy and current mapping.

Using this measurement technique, we evaluate our clients’ cell designs, qualify the combination of cell components and investigate control strategies at the cell level. We can analyze the gas flow distribution through the segments depending on the operation conditions by extracting individual characteristic time constants of the impedance spectra.

Investigation of Along-the-channel Effects

While many scientific investigations rely on differential cells, which are used to assure minimized gradients of gas concentrations, humidity and temperature, the conditions in real cells are different. We offer tests on customized cells or stacks. To reduce testing costs due to high power test stations and gas consumption, we have developed an along-the-channel test cell, optimized to study effects from gas inlet to outlet under realistic operating conditions. The cell can be manufactured according to the customers channel geometry with dimensions of the active cell area of e.g. 25 x 2 cm². A segmentation, e.g. into 25 electrically isolated segments with 2 cm² each, is one option to investigate the behavior along the length of the gas flow channels.

Model-based Analysis of Experimental Results

To extract and analyze properties like gas velocity in channels or cells that are difficult to measure directly, we have developed scientific and thoroughly validated models.

Spatially Resolved Characterization of Single Cells

At high current densities and large cell areas the reaction gases can significantly deplete. Also a local increase of humidity and temperature can occur. The large inhomogeneities within the cell can influence the performance and degradation of the fuel cell. In order to characterize the local operation of the cells, we have systems for electro-chemical multi-channel analysis with several independent potentiostats coupled with frequency response analyzers. Hence, customized single cells may be divided into various segments with their individual electrical contact. In each segment, the operation can be characterized by simultaneous electrochemical impedance spectroscopy and current mapping.

Using this measurement technique, we evaluate our clients’ cell designs, qualify the combination of cell components and investigate control strategies at the cell level. We can analyze the gas flow distribution through the segments depending on the operation conditions by extracting individual characteristic time constants of the impedance spectra.

Investigation of Along-the-channel Effects

While many scientific investigations rely on differential cells, which are used to assure minimized gradients of gas concentrations, humidity and temperature, the conditions in real cells are different. We offer tests on customized cells or stacks. To reduce testing costs due to high power test stations and gas consumption, we have developed an along-the-channel test cell, optimized to study effects from gas inlet to outlet under realistic operating conditions. The cell can be manufactured according to the customers channel geometry with dimensions of the active cell area of e.g. 25 x 2 cm². A segmentation, e.g. into 25 electrically isolated segments with 2 cm² each, is one option to investigate the behavior along the length of the gas flow channels.